



# Advances in autoimmune disease therapeutics







### **INTRODUCTION**

### IN FOCUS SUMMARY

Autoimmune disease research solutions

### **INFOGRAPHIC**

Autoimmune diseases: the era of targeted treatments

### **APPLICATION NOTE**

Cytokine networks in autoimmune diseases: mechanisms, pathogenesis and therapeutic innovations

### **APPLICATION NOTE**

Precision targeting of autoimmune diseases

### **REVIEW ARTICLE**

Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system

### **REVIEW ARTICLE**

Immunomodulatory role and therapeutic potential of HLA-DR<sup>+</sup> regulatory T cells in systemic lupus erythematosus

### **REVIEW ARTICLE**

Autoimmune neuro-ophthalmic disorders: pathophysiologic mechanisms and targeted biologic therapies



### Autoimmune Disease Research Solutions

• Comprehensive Support for Early Diagnosis and Drug Discovery



# INTRODUCTION

Autoimmune diseases are a group of disorders that cause the immune system to mistakenly attack healthy cells, tissues or organs. Central to the process are cytokines, which exhibit dual functionality in autoimmune diseases as regulators of immune homeostasis and as drivers of disease. Therapeutic approaches that target cytokines, such as monoclonal antibodies and biologic therapies, have been developed and have since become established approaches for treating autoimmune diseases. More recently, emerging research on HLA-DR+ regulatory T cells, a distinct class of Tregs with unique biological properties, and CAR-T cells, a promising immunotherapy, has shown their potential as therapeutic strategies for autoimmune diseases.

In this eBook, we explore both established and emerging therapeutic approaches, offering insights into new areas of research and innovative strategies for autoimmune disease drug development.





### **In Focus:** Autoimmune disease research solutions



Video: Autoimmune disease research solutions

Leading our In Focus on research solutions for autoimmune diseases, this video gives an introduction to different types of autoimmune diseases, how they are detected and how they can be targeted with monoclonal antibodies and small molecule drugs.



Animation by James Harvie.

### <u>Talking Techniques | Cytokines networks in autoimmune</u> diseases

In this episode of Talking Techniques, Ritwika Biswas, Field Application Scientist at Sino Biological US Inc. (PA, USA), discusses the role of cytokines in autoimmune diseases, the techniques used to examine them and some emerging therapeutic innovations beginning to change the way we approach the treatment of autoimmune diseases.

### **Contents**

- Introduction: 00:00-02:06
- The role of cytokines in a healthy body: 02:06-03:57
- Cytokines in autoimmune diseases: 03:57–06:24
- Techniques for detecting cytokines in autoimmune diseases: 06:24-09:48
- Targeting cytokines for therapeutic purposes: 09:48-11:54
- Challenges with targeting cytokines in autoimmune diseases: 11:54–14:28
- Addressing the challenges of targeting cytokines: 14:28–16:43
- Established cytokine-targeting drugs: 16:43-18:57
- The future of cytokines in autoimmune diseases: 18:57–21:54









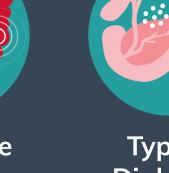


### Autoimmune diseases: the era of targeted treatments

### Autoimmune diseases are diverse and complex diseases involving immune cells, cytokines and protein kinases. In recent years, significant progress has been made in drug development and

targeted therapies for autoimmune diseases, especially biologic drugs. These drugs have primarily focused on monoclonal antibodies and small molecule inhibitors. This infographic provides a comprehensive overview of autoimmune diseases, covering common types, therapeutic targets, drug development, biomarkers, and their applications, while also highlighting Sino Biological's solutions in this field. Common autoimmune diseases






deformity









Type 1

**Diabetes** 

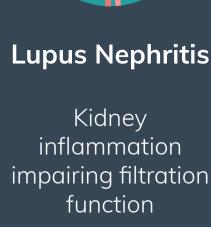




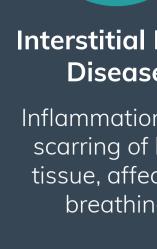




**Ulcerative Colitis** Chronic inflammation and ulcers in the colon

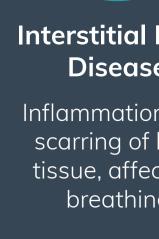

Destruction of insulin-producing cells in the pancreas





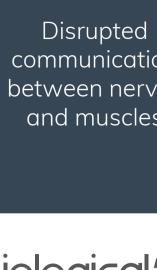


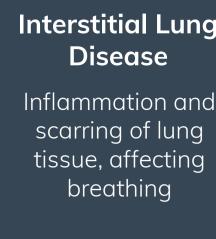

and rectum





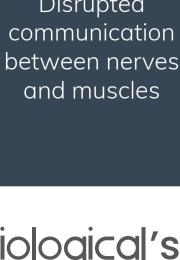


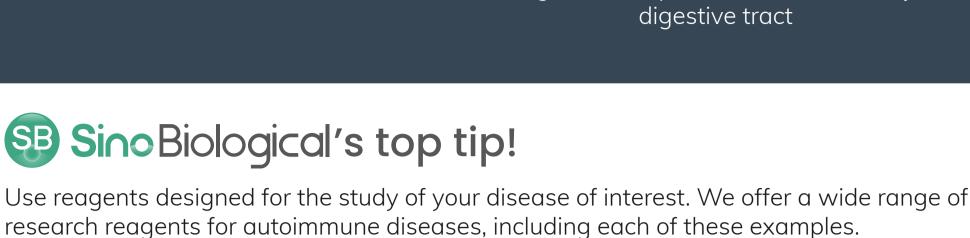






Crohn's Chronic






Disease inflammation that can affect any part of the digestive tract

**Systemic Lupus Erythematosus** 



### Widespread inflammation affecting multiple



systems

Key therapeutic targets Immune cell proteins

### Targeting these proteins can modulate the behavior of immune cells to suppress excessive immune responses, reduce inflammation and tissue damage, thereby controlling disease progression. **CD20**

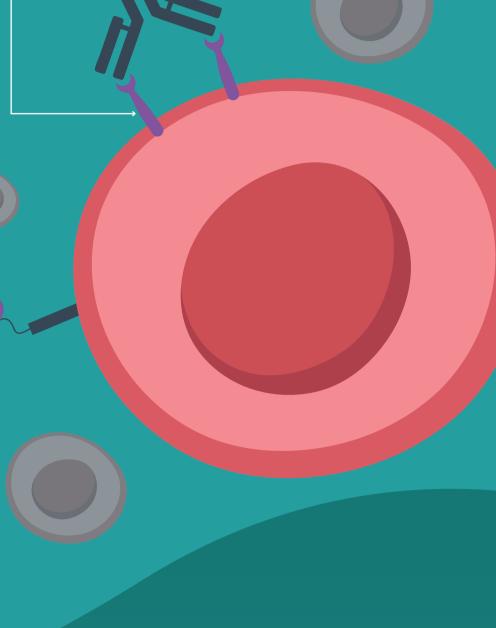
Surface marker on B cells

Targeting CD20 clears B cells,

reducing autoantibody production

Co-stimulatory molecule on B cells

monoclonal antibody inebilizumab has


been approved for neuromyelitis optica

Clinically approved example: The monoclonal antibody ocrelizumab has been approved for multiple scelrosis

Certain immune cell proteins play a crucial role in the initiation of aberrant immune responses.



- Targeting CD19 clears B cells and reduces autoimmune responses Clinically approved example: The



Inhibitory receptor on T cells

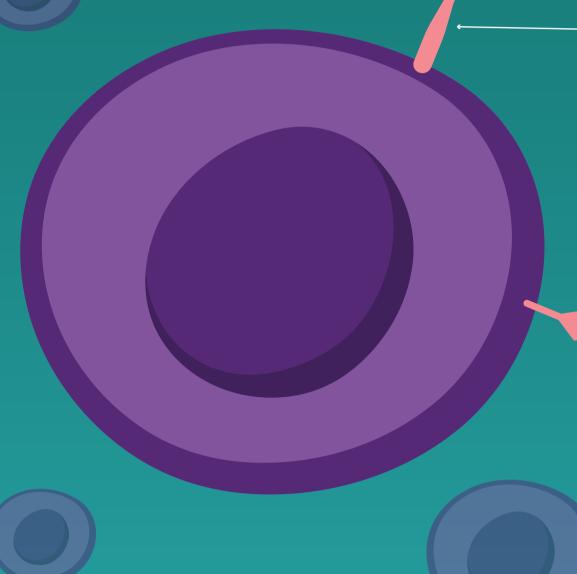
By binding to CD80/CD86, it

prevents the immune

system overactivation.

suppresses T cell activation and

Clinically approved example: The


approved for rheumatoid arthritis

function and suppresses excessive

Clinically approved example: The

monoclonal antibody teplizumab

fusion protein abatacept has been



### Key component of the T cell receptor complex Targeting CD3 modulates T cell

CD3

CTLA-4

has been approved for type 1 diabetes

immune responses

- Cytokines are proteins secreted by a wide range of immune and non-immune cells, which are involved in the pathways that cause inflammation. They are often overexpressed in autoimmune
  - **Effect**

**Protein Kinases** 

**JAK Family** 

for alopecia areata

responses and inflammation

**SYK** 

for purpura

abnormal activity.

**Main Diseases** 

Systemic Scleroris

Interleukin-6, IL-6

protein production.

Psoriasis

Sjogren's Syndrome

**Antinuclear Antibodies, ANA** 

Systemic Lupus Erythmatosus

Targets nuclear components, forming immune

complexes that activate the immune system

and cause inflammation and tissue damage.

Cytokines

**BAFF** TNF-a \* Key pro-inflammatory cytokine that 🜞 Key factor for B cell survival and activation, drives inflammation and tissue damage promoting autoantibody production

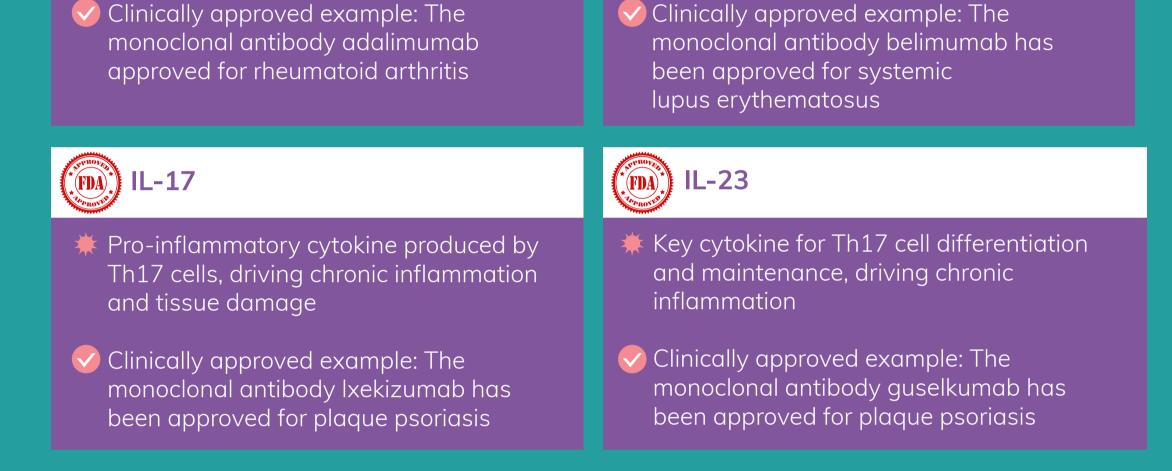
disorders, leading to excessive inflammation. Targeting cytokines has become an affective

Stimulus

**CYTOKINE** 

**GENE** 

therapeutic strategy which can help regulate immune responses and alleviate disease symptoms.


Cytokines

Receptor

Signal

**GENE** 

**ACTIVATION** 



Kinases play a pivotal role in a number of cellular processes, and through their modulation of

responses and signaling pathways. In autoimmune diseases, the function of these kinases can

become disrupted, leading to unregulated inflammatory stimulation. Small molecule inhibitors

Kinases

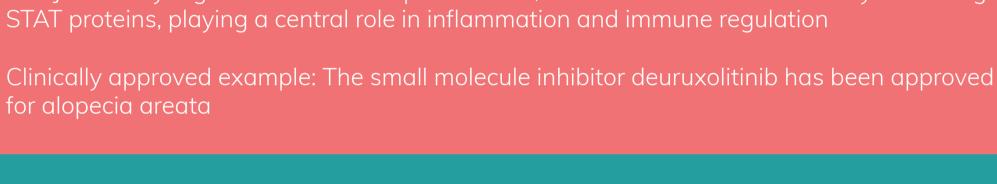
The IAK family regulate immune cell proliferation, differentiation and function by activating

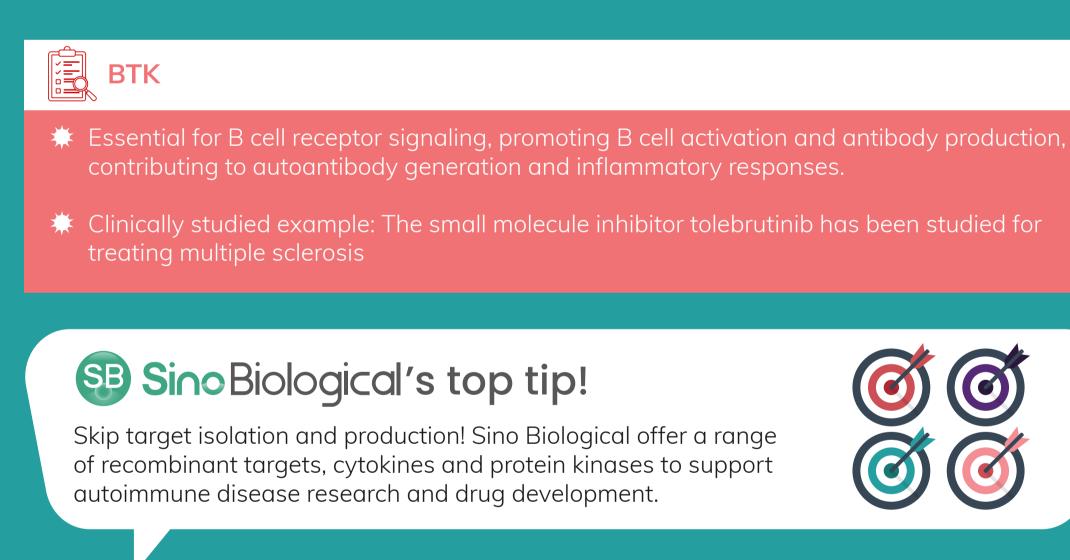
Mediates B cell and Fc receptor signaling, regulating immune cell function by activating

downstream signaling pathways. SYK plays a central role in antibody mediated immune

Clinically approved example: The small molecule inhibitor fostamatinib has been approved

inflammatory mediator production, they help regulate immune cell activation, inflammatory


targeting these kinases help control excessive immune activation and reduce inflammation.




B cell receptor

or T cell receptor

**JAKs** 





The primary aim of researching biomarkers in autoimmune diseases is to discover markers that

a critical role in diagnosing diseases, predicting outcomes and monitoring treatment responses.

They include cytokines, antibodies, and cellular markers, which reflect the immune system's

change in response to disease progression but then normalize after effective treatment. They play

**C-Reactive Protein, CRP** 

immune clearance.

Rheumatoid Arthritis

Complement C3/C4

**Main Diseases** 

Lupus Nephritis

IgA Nephropathy

Improve the reproducibility of your biomarker investigations with our high-quality tools for

biomarker analysis and drug discovery, featuring high activity, purity and

**Main Diseases** 

Psoriasis

Acute-phase protein sythesized by the liver

damaged cells, activating the complement

system and promoting inflammation and

in response to inflammation or tissue

damage. CRP binds to pathogens or

Systemic Lupus Erythematosus

Central to the complement system, C3

are cleaved into fragments, mediating

inflammation and immune clearance.

Systemic Lupus Erythematosus

participates in the classical, alternative and

lectin pathways, while C4 is involved in the

classical and lectin pathways. Upon, they

Biomarkers and Applications

### **Main Diseases** Rheumatoid Arthritis Castleman disease

Sino Biological's top tip!

Produced by immune cells, IL-6 binds to IL-6

receptors, activating the JAK-STAT pathway

and promoting inflammation, immune cell

differentiation, and acute-phae

lot-to-lot consistency.

Immunofluorescent antinuclear antibody test This test involves mixing a blood sample with cells, often HEp-2 cells, whose nuclei are exposed. If ANAs in the sample are present, they will bind to nuclear antigens on the cells. A secondary antibody tagged with fluorescent dye is then added, allowing the ANAs to be viewed through a microscope.

## Techniques for detection

This test is often used to detect ANAs as it is a sensitive test that

These techniques can quantify levels of CRP in a blood sample

allows for visualization of present ANAs.

Immunoturbidimetry or nephelometry

by measuring the interaction of light with

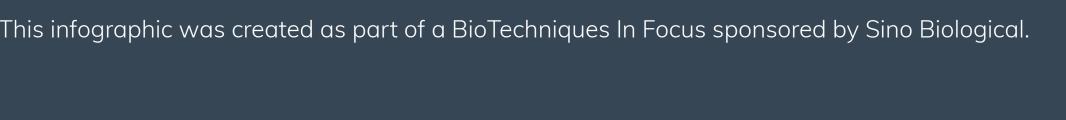
antigen-antibody complexes.

### Either technique can be used for reliable and accurate detection of CRP. Immunoturbidimetry is simple to perform, while nephelometry is more sensitive. **ELISA kit** This technique uses an enzyme-linked antibody to detect the presence of specific biomarkers, such as IL-6 and C3/C4. This test is often used to detect key biomarkers due to its sensitivity and specificity.

# What solutions are available?

Solutions are available to assist with autoimmune disease research and drug

autoimmune disease research, such as recombinant target proteins, cytokines

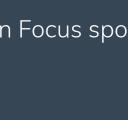

and kinases, supporting pathogenesis study, biomarker analysis, targeted drug

discovery. Sino Biological, for instance, offers comprehensive reagents for

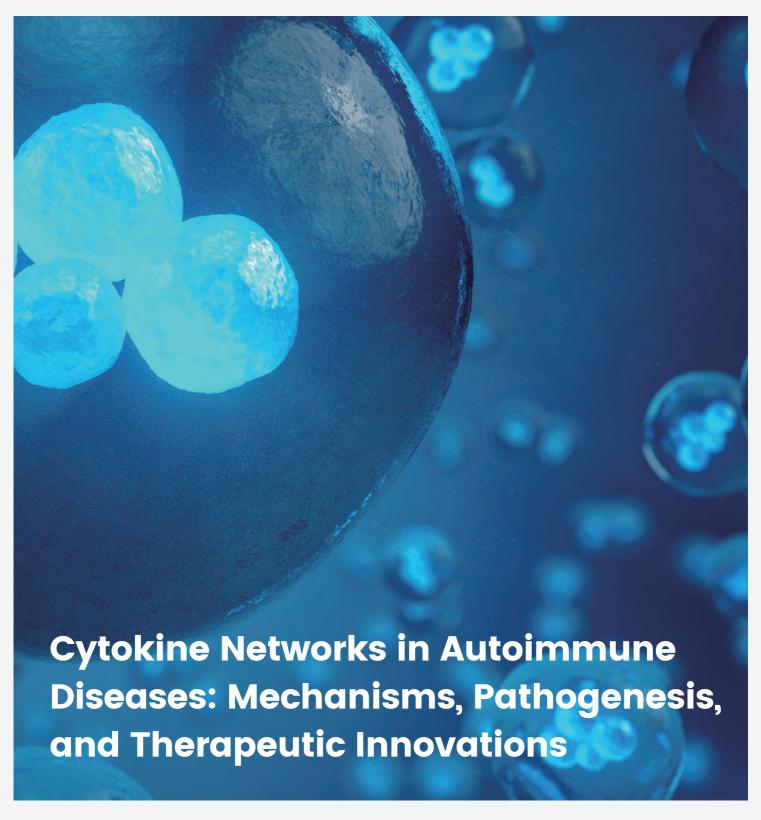
Don't reinvent the wheel! We offer a range of antibodies and ELIZA kits for

SB Sino Biological's top tip!






SB Sino Biological



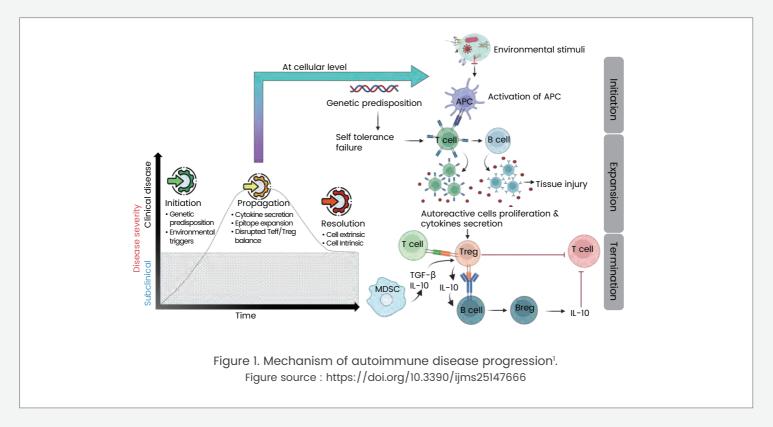

In Focus C

biomarker studies.








Autoimmune diseases arise from a complex interplay of immune dysregulation, characterized by the loss of self-tolerance and chronic inflammation. Central to these processes are cytokines – soluble signaling proteins that orchestrate immune responses by mediating communication between cells. Cytokine networks exhibit dual functionality: they are essential regulators of immune homeostasis, yet

paradoxically act as pathogenic drivers in diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, and inflammatory myopathies. Key findings highlight the therapeutic potential of cytokine-targeted biologics, Janus kinase (JAK) inhibitors, and emerging strategies such as miRNA modulation and engineered cytokines.

### **Mechanism of Autoimmunity**

Autoimmunity results from complex disruptions in immune signaling pathways where genetic predisposition and environmental factors trigger the activation of self-reactive lymphocytes, excessive cytokine production, and autoantibody release that collectively damage normal tissues. Resolution of autoimmune processes, when possible, depends on the

restoration of regulatory mechanisms through regulatory T cells (Tregs) and regulatory B cells (Bregs) that produce immunosuppressive cytokines like transforming growth factor-beta (TGF- $\beta$ ) and interleukin-10 (IL-10), which help repair tissue damage and suppress inflammatory pathways activated during initiation and propagation phases.



### Cytokine Networks in Autoimmune Pathogenesis

### **Pro-Inflammatory Cytokine Dominance**

The pathogenesis of autoimmune diseases is frequently driven by a hyperactive pro-inflammatory cytokine environment. Tumor necrosis factor-alpha (TNF- $\alpha$ ), IL-6, and IL-17 are pivotal mediators in conditions like RA and psoriasis. The IL-1 family, including IL-1 $\beta$  and IL-18, further exacerbates tissue

damage by activating the NLRP3 inflammasome, a mechanism implicated in SLE<sup>2,3</sup>. These cytokines not only drive local inflammation but also contribute to systemic manifestations, such as fever and fatigue, through their actions on the hypothalamic-pituitary-adrenal axis<sup>4</sup>.

Table 1. Disease-specific cytokines

| Disease                           | Cytokines Involved                                         | References                                                         |
|-----------------------------------|------------------------------------------------------------|--------------------------------------------------------------------|
| Rheumatoid Arthritis              | TNF-α, IL-6, GM-CSF, IL-23/IL-17 axis, IL-7 and IL-21      | Kondo, N., <i>et al</i> , 2021;<br>Leung, S. <i>et al</i> , 2010   |
| Systemic Lupus Erythematosus      | IFN- $\alpha/\beta$ , IL-2, IL-1 $\beta$ , IL-18 and IL-12 | Leung, S., <i>et al</i> , 2010;<br>Kotyla, P., <i>et al</i> , 2022 |
| Psoriasis and Psoriatic Arthritis | IL-23/IL-17 axis (IL-17A, IL-17F), IL-22, TNF-α and IL-6   | Wojas-pelc, A., et al, 2006                                        |
| Inflammatory Myopathies           | IFN-α/β, IFN-γ, CXCL9, CXCL10, and IL-1β                   | De Paepe, B., <i>et al</i> , 2015                                  |

GM-CSF: granulocyte-macrophage colony-stimulating factor

IFN- $\alpha/\beta$ : type I interferons

### **Regulatory Cytokine Deficiencies**

Counterbalancing pro-inflammatory signals are immunosuppressive cytokines such as IL-10 and TGF- $\beta$ . IL-10, produced by Bregs and Tregs, inhibits antigen presentation and suppresses Th1/Th17 responses<sup>5,6</sup>. In SLE, reduced IL-10 production by Bregs correlates with disease flares, highlighting its protective role<sup>6</sup>. TGF- $\beta$ , conversely,

maintains peripheral tolerance by inducing Treg differentiation and suppressing effector T cell proliferation³. Dysregulation of these regulatory pathways creates a permissive environment for autoimmunity, as seen in RA and multiple sclerosis (MS), where defective TGF- $\beta$  signaling permits unchecked Th17 activity³.7.

### Cytokine Imbalance and Feedback Loops

Autoimmune diseases often feature self-reinforcing cytokine feedback loops. For instance, IL-6 enhances Th17 differentiation while inhibiting Treg development, creating a pathogenic cycle that sustains inflammation<sup>7</sup>. In psoriasis, IL-23 produced by dendritic cells perpetuates Th17 survival, which in turn

secretes IL-17 and IL-22, further activating keratinocytes and stromal cells<sup>8</sup>. These loops are exacerbated by tissue-resident cells, such as synovial fibroblasts in RA, which produce chemokines like CXCL13 to recruit B cells and plasma cells, fostering ectopic lymphoid structure formation<sup>7</sup>.

### **Therapeutic Targeting of Cytokine Networks**

### **Biologic Therapies**

Anti-TNF-α Agents: TNF inhibitors (e.g., infliximab, adalimumab) revolutionized RA treatment by reducing synovitis and radiographic progression<sup>7</sup>. However, TNF blockade may paradoxically induce psoriasiform lesions in some patients, underscoring cytokine pleiotropy<sup>8</sup>.

IL-6 Inhibition: Tocilizumab, an IL-6 receptor antagonist, ameliorates systemic inflammation in RA and juvenile idiopathic arthritis (JIA)<sup>7</sup>. IL-6 blockade also shows promise

in neuromyelitis optica spectrum disorder (NMOSD), reducing relapse frequency.

IL-17/IL-23 Axis Targeting: Secukinumab (anti-IL-17A) and ustekinumab (anti-IL-12/23p40) achieve rapid skin clearance in psoriasis by disrupting Th17 signaling<sup>8</sup>. Brodalumab, targeting the IL-17 receptor, demonstrates efficacy in psoriatic arthritis<sup>8</sup>.

### **JAK/STAT Inhibition**

JAK inhibitors (jakinibs) modulate cytokine signaling by blocking downstream STAT phosphorylation. Tofacitinib (JAK1/3 inhibitor) and baricitinib (JAK1/2 inhibitor) are approved for RA, suppressing IFN-y, IL-6, and GM-CSF pathways<sup>9</sup>. In SLE, JAK inhibitors reduce IFN- $\alpha$  signature and ameliorate nephritis, offering an alternative to broad immunosuppression<sup>9</sup>.

### miRNA Modulation

miRNAs regulate cytokine production post-transcriptionally. miR-155 promotes TNF- $\alpha$  and IL-6 in RA synovium, while miR-146a feedback inhibits NF- $\kappa$ B signaling<sup>12</sup>. Antagomirs targeting miR-155 reduce disease severity in experimental autoimmune encephalomyelitis (EAE), highlighting the potential of miRNA-based therapies<sup>12</sup>.

### IL-2-Based Immunotherapies

Low-dose IL-2 expands Tregs, restoring immune tolerance in SLE and type 1 diabetes<sup>10</sup>. Engineered IL-2 variants with enhanced Treg specificity (e.g., IL-2-anti-IL-2 complexes) show promise in preclinical models, though clinical trials report variable efficacy<sup>10,11</sup>.

### **Engineered Cytokines**

Cytokine engineering aims to enhance therapeutic specificity. PEGylated IL-10 (AM0010) prolongs half-life and suppresses colitis in preclinical models<sup>11</sup>. Similarly, IL-4 fusion proteins bias macrophage polarization toward an anti-inflammatory phenotype, offering novel strategies for fibrosis-prone diseases like systemic sclerosis<sup>11</sup>.

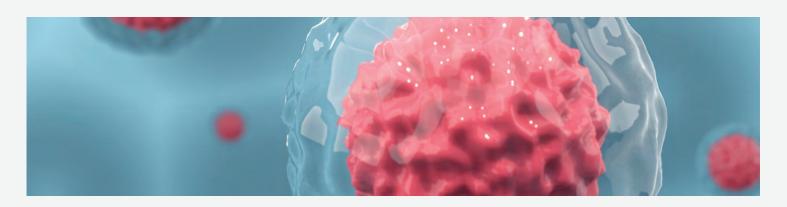



Table 2. Representative FDA-approved drugs for autoimmune diseases targeting cytokines

| Drug Name    | Target Cytokine | Brand Name | FDA Approval | Indications                                                                                                                        |
|--------------|-----------------|------------|--------------|------------------------------------------------------------------------------------------------------------------------------------|
| Etanercept   | TNF-α           | Enbrel     | 1998         | Rheumatoid arthritis (RA), juvenile idiopathic arthritis (JIA), ankylosing spondylitis (AS), psoriasis, psoriatic arthritis (PsA)  |
| Infliximab   | TNF-α           | Remicade   | 1998         | RA, AS, psoriasis, PsA, ulcerative colitis (UC), Crohn's disease (CD)                                                              |
| Adalimumab   | TNF-α           | Humira     | 2002         | RA, JIA, AS, psoriasis, PsA, UC, CD, hidradenitis suppurativa, uveitis                                                             |
| Golimumab    | TNF-α           | Simponi    | 2009         | RA, AS, PsA, UC                                                                                                                    |
| Certolizumab | TNF-α           | Cimzia     | 2008         | RA, AS, psoriasis, PsA, CD                                                                                                         |
| Anakinra     | IL-1            | Kineret    | 2001         | RA, Cryopyrin-associated periodic syndromes (CAPS)                                                                                 |
| Tocilizumab  | IL-6R           | Actemra    | 2010         | RA, juvenile idiopathic arthritis (JIA),<br>adult-onset Still's disease (AOSD), giant<br>cell arteritis, cytokine release syndrome |
| Sarilumab    | IL-6R           | Kevzara    | 2017         | RA                                                                                                                                 |
| Siltuximab   | IL-6            | Sylvant    | 2014         | Multicentric Castleman's disease                                                                                                   |
| Satralizumab | IL-6R           | Enspryng   | 2020         | Neuromyelitis optica spectrum disorder (NMOSD)                                                                                     |
| Secukinumab  | IL-17A          | Cosentyx   | 2015         | AS, psoriasis, PsA                                                                                                                 |
| Ixekizumab   | IL-17A          | Taltz      | 2016         | Psoriasis, PsA, AS                                                                                                                 |
| Brodalumab   | IL-17 receptor  | Siliq      | 2017         | Psoriasis                                                                                                                          |
| Ustekinumab  | IL-12, IL-23    | Stelara    | 2009         | Psoriasis, PsA, CD, UC                                                                                                             |
| Canakinumab  | IL-1β           | llaris     | 2009         | CAPS, systemic juvenile idiopathic arthritis (sJIA), TRAPS, HIDS/MKD, familial Mediterranean fever (FMF)                           |
| Satralizumab | IL-6R           | Enspryng   | 2020         | Neuromyelitis optica spectrum disorder (NMOSD)                                                                                     |
| Tofacitinib  | JAK1, JAK3      | Xeljanz    | 2018         | RA, PsA, UC, AS, JIA                                                                                                               |

Summarized based on Jung S and Kim W's paper<sup>13</sup>.

Abbreviations:

RA: Rheumatoid Arthritis AS: Ankylosing Spondylitis PsA: Psoriatic Arthritis UC: Ulcerative Colitis CD: Crohn's Disease

JIA: Juvenile Idiopathic Arthritis

pJIA: Polyarticular Juvenile Idiopathic Arthritis

FMF: Familial Mediterranean Fever

NMOSD: Neuromyelitis Optica Spectrum Disorder

### Conclusion

Advances in cytokine biology have unraveled disease-specific signatures, enabling precision therapies that target key nodes within these networks. Despite successes, challenges remain, including cytokine redundancy, pleiotropy, and interpatient heterogeneity. Future directions include microbiome-directed interventions, personalized cytokine profiling, and engineered biologics with enhanced cell-type specificity. By integrating mechanistic insights with innovative therapeutics, the next frontier in autoimmunity lies in harnessing the cytokine network to restore immune equilibrium.

To support targeted research and drug development for autoimmune diseases, Sino Biological provides a range of high-quality cytokine products. Our products undergo stringent quality control to ensure high purity, bioactivity, stability, and low endotoxin levels, with options available across multiple species, including human, mouse, monkey, and rat. Additionally, Sino Biological provides comprehensive solutions for autoimmune diseases , offering a wide range of research reagents for nearly 50 diseases. Our portfolio includes autoimmune disease target reagents such as target proteins, cytokines, and kinases, as well as research reagents for biomarker studies. By providing high-quality tools for biomarker analysis and drug discovery, Sino Biological plays a crucial role in advancing early detection and targeted therapy development of autoimmune diseases.

### **Featured Products for Autoimmune Research**

| Cat#           | Molecule     | Species                                 | Expression Host  | SEC-HPLC Purity  | Activity |
|----------------|--------------|-----------------------------------------|------------------|------------------|----------|
| GMP-11848-HNAE | IL-2         | Human                                   | E. coli          | ≥ 95%            | Active   |
| GMP-11846-HNAE | IL-4         | Human                                   | E. coli          | ≥ 95%            | Active   |
| GMP-10360-HNAE | IL-15        | Human                                   | E. coli          | ≥ 95%            | Active   |
| GMP-CT011-H08H | IL-12        | Human                                   | HEK293 Cells     | ≥ 95%            | Active   |
| 51112-MNAH     | M-CSF/CSF1   | Mouse                                   | HEK293 Cells     | ≥ 95%            | Active   |
| 10602-HNAE     | TNF-alpha    | Human                                   | E. coli          | ≥ 95%            | Active   |
| 10804-HNAC     | TGF beta 1   | Human, Rhesus,<br>Cynomolgus,<br>Canine | CHO Stable Cells | > 95% (SDS-PAGE) | Active   |
| 10395-HNAE     | IL-6         | Human                                   | E. coli          | ≥ 95% (SDS-PAGE) | Active   |
| 11821-HNAE     | IL-7         | Human                                   | E. coli          | ≥ 95%            | Active   |
| 50245-MNAE     | IL-10        | Mouse                                   | E. coli          | ≥ 90% (SDS-PAGE) | Active   |
| 12047-HNAE     | IL-17        | Human                                   | E. coli          | ≥ 95% (SDS-PAGE) | Active   |
| СТ048-Н08Н     | IL-23        | Human                                   | HEK293 Cells     | > 90% (SDS-PAGE) | Active   |
| 10119-HNCE     | IL-18        | Human                                   | E. coli          | ≥ 95%            | Active   |
| 17049-H07H2    | TL1A/TNFSF15 | Human                                   | HEK293 Cells     | ≥ 95%            | Active   |

### References

1. Yasmeen, F., Pirzada, R. H., Ahmad, B., Choi, B. & Choi, S. Understanding Autoimmunity: Mechanisms, Predisposing Factors, and Cytokine Therapies. International Journal of Molecular Sciences vol. 25 Preprint at https://doi.org/10.3390/ijms25147666 (2024).

- 2. De Paepe, B. & Zschüntzsch, J. Scanning for Therapeutic Targets within the Cytokine Network of Idiopathic Inflammatory Myopathies. Int J Mol Sci 16, 18683 (2015).
- 3. Leung, S. et al. The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease. Cell Mol Immunol 7, 182 (2010).
- 4. Biscetti, L. et al. Headache and immunological/autoimmune disorders: a comprehensive review of available epidemiological evidence with insights on potential underlying mechanisms. J Neuroinflammation 18, 259 (2021).
- 5. De Gruijter, N. M., Jebson, B. & Rosser, E. C. Cytokine production by human B cells: role in health and autoimmune disease. Clin Exp Immunol 210, 253 (2022).
- 6. Lino, A. C., Dörner, T., Bar-Or, A. & Fillatreau, S. Cytokine-producing B cells: a translational view on their roles in human and mouse autoimmune diseases. Immunol Rev 269, 130–144 (2016).
- 7. Kondo, N., Kuroda, T. & Kobayashi, D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. International Journal of Molecular Sciences 2021, Vol. 22, Page 10922 22, 10922 (2021).
- 8. WOJAS-PELC, A., CISZEK, M., KURNYTA, M. & MARCINKIEWICZ JANUSZ. Cytokine network in psoriasis. Cross-talk between keratinocytes and cells of the skin immune system. (2006).
- 9. Kotyla, P., Gumkowska-Sroka, O., Wnuk, B. & Kotyla, K. Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals 15, 936 (2022).
- 10. Raeber, M. E., Sahin, D., Karakus, U. & Boyman, O. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine 90, 104539 (2023).
- 11. Deckers, J. et al. Engineering cytokine therapeutics. Nature Reviews Bioengineering 1, 286 (2023).
- 12. Salvi, V., Gianello, V., Tiberio, L., Sozzani, S. & Bosisio, D. Cytokine targeting by miRNAs in autoimmune diseases. Front Immunol 10, 435194 (2019).
- 13. Jung, S. M. & Kim, W. U. Targeted Immunotherapy for Autoimmune Disease. Immune Network vol. 22 Preprint at https://doi.org/10.4110/in.2022.22.e9 (2022).

### www.sinobiological.com

Sino Biological US Inc. (U.S.A.)

Tel: +1-215-583-7898

Email: cro\_us@sinobiologicalus.com

Sino Biological, Inc. (Global)

Tel: +86-400-890-9989

Email: cro-service@sinobiological.com

Sino Biological Europe GmbH (Europe)

Tel: +49(0)6196 9678656

Email: cro-service@sinobiological.com


株式会社日本シノバイオロジカル (Japan)

Tel: 044-400-1330

Email: cro-service@sinobiological.co.jp







Autoimmune diseases represent a wide range of disorders affecting specific organs or the entire body, all characterized by the immune system's misrecognition of self-antigens. These conditions arise from a combination of genetic and environmental factors. The immune system in these disorders fails to properly distinguish between foreign pathogens and the body's own structures, leading to sustained attacks on healthy cells, tissues and organs.\(^1\) This pathological process

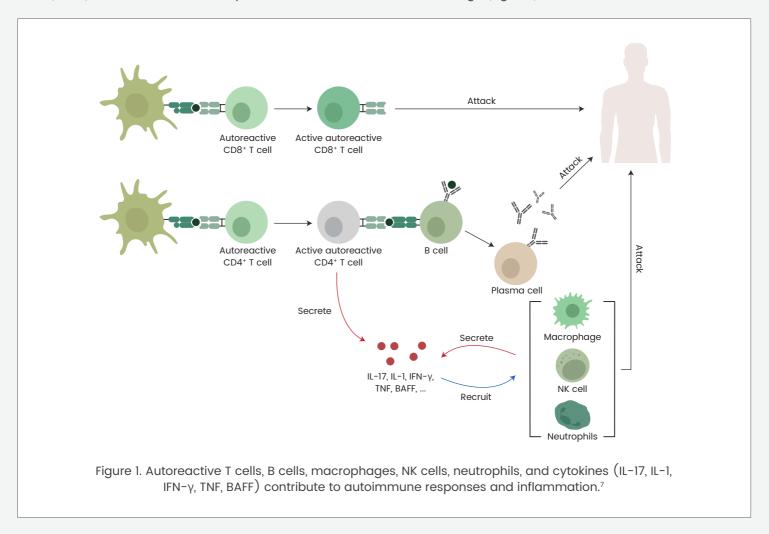

results in chronic inflammation, progressive tissue damage, fibrosis, and eventual organ dysfunction. To date, researchers have identified around 150 autoimmune diseases, with several validated drug targets in approved therapies (Table 1). Common autoimmune diseases include rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (TIDM), and inflammatory bowel disease (IBD)<sup>2,3,4</sup>.

Table 1. Approved Therapies for Autoimmune Disease and Their Targets

| Target     | Drug Name         | Indications                    | Approved Year |
|------------|-------------------|--------------------------------|---------------|
| FCRN/FCGRT | Rozanolixizumab   | Myasthenia Gravis              | 2023/6/26     |
| CD20       | Ublituximab       | Multiple Sclerosis Relapse     | 2022/12/28    |
| CD3        | Teplizumab        | Type 1 Diabetes                | 2022/11/17    |
| ILIRL2     | Spesolimab        | Generalized Pustular Psoriasis | 2022/9/1      |
| IFNAR1     | Anifrolumab-FNIA  | Systemic Lupus Erythematosus   | 2021/7/30     |
| IGFIR      | Teprotumumab-TRBW | Graves Ophthalmopathy          | 2020/1/21     |
| CD19       | Inebilizumab-cdon | Neuromyelitis Optica           | 2020/6/11     |
| CD20       | Ocrelizumab       | Multiple Sclerosis             | 2017/3/28     |

Despite their clinical manifestations, they share the same core pathology: dysregulated T and B cell activity. B cells contribute to disease progression by producing autoantibodies, secreting pro-inflammatory cytokines, and serving as antigen-presenting cells (APCs) that activate other components of the immune

system.<sup>5</sup> Meanwhile, CD4+T lymphocytes coordinate immune responses by secreting cytokines and activating various immune cell populations. When dysregulated, they generate autoreactive T cells, leading to chronic inflammation and tissue damage (Figure 1)6.



The rising prevalence and complexity of autoimmune diseases present significant challenges for healthcare and the pharmaceutical industry. Current treatments often lack specificity, broadly targeting the immune system and leading to side effects like increased infection risk and allergic

reactions<sup>8</sup>. However, promising strategies with higher target specificity—such as chimeric antigen receptor T (CAR-T) cell therapy and antibody-drug conjugates (ADC)—are now under investigation.<sup>6, 9</sup>

### CAR-T Cell Therapy: A Targeted Approach for Autoimmune Diseases

Originally designed for cancer treatment, CAR-T therapy is now being explored for autoimmune diseases. Since many of these conditions arise from autoreactive B and T cells, selectively eliminating them offers a novel therapeutic strategy. Research is focused on engineering CAR-T cells to recognize and remove cells expressing specific surface markers. In B cell-mediated autoimmune diseases, targets like CD19, CD20, CD38, and BCMA have been studied (Table

2), while CD7 and CD70 are being investigated in T cell-driven disorders<sup>4</sup>.

Among all CAR-T therapy targets, CD19 appears to be the most promising and well-studied. Clinical trials investigating CD19 CAR-T cells for severe SLE, MS, systemic sclerosis (SSc), and lupus nephritis (LN) have shown effective disease control with favorable safety profiles<sup>10-11</sup>.

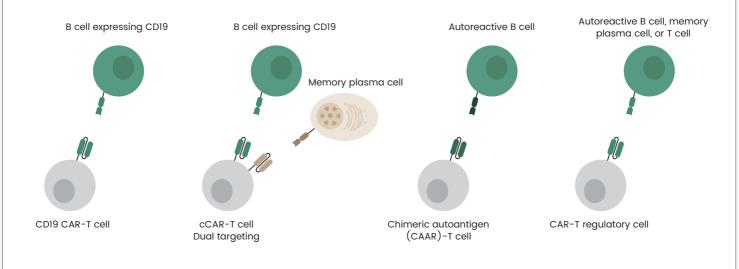



Figure 2. Overview of CAR-T cell engineering strategies for autoimmune diseases, including broad B cell targeting, dual targeting, selective depletion of autoreactive B cells, and T regulatory cell engineering.<sup>6</sup>

A recent case of severe SLE treated with autologous CD19 CAR-T cells showed complete and sustained depletion of circulating B cells, leading to the disappearance of dsDNA autoantibodies. No adverse events were reported during the treatment.<sup>10</sup> A separate study involving five patients with SLE treated with CD19 CAR-T cells further supports these findings.

All patients achieved sustained clinical remission one year after treatment. Naïve B cells began to re-emerge three months post-therapy, without recurrence of SLE symptoms. This suggests an effective reset of the immune system, promoting long-term disease control.<sup>11</sup>

Table 2. Representative clinical trials for CAR-T cell therapy in autoimmune diseases.

| Target    | Condition                                                  | NTC         | Phase     | Sponsor                                     |
|-----------|------------------------------------------------------------|-------------|-----------|---------------------------------------------|
| CD19      | Severe, refractory systemic lupus erythematosus            | NCT05869955 | Phase 1   | Bristol-Myers Squibb                        |
| CD19      | Systemic lupus erythematosus                               | NCT05765006 | Phase 1   | Shanghai Ming Ju<br>Biotechnology Co., Ltd. |
| CD19      | Refractory lupus nephritis                                 | NCT05938725 | Phase 1   | Kyvema Therapeutics                         |
| CD19      | Systemic lupus erythematosus/lupus nephritis               | NCT05798117 | Phase 1   | Novartis Pharmaceuticals                    |
| CD19      | Refractory/Moderate-to-severe systemic lupus erythematosus | NCT06106096 | Phase 1/2 | Wuhan Union Hospital, China                 |
| CD19/BCMA | Relapsed/refractory systemic lupus erythematosus           | NCT05474885 | Phase 1   | iCell Gene Therapeutics                     |
| CD19/CD20 | Refractory systemic lupus erythematosus                    | NCT06153095 | Phase 1   | ImmPACT Bio                                 |
| CD19      | Relapsing/Progressive multiple sclerosis                   | NCT06222001 | Phase 1   | Juno Therapeutics                           |
| CD19      | Refractory myasthenia gravis                               | NCT05828225 | Phase 2   | Zhejiang University                         |
| ВСМА      | Generalized myasthenia gravis                              | NCT04146051 | Phase 1   | Cartesian Therapeutics                      |

Despite promising results in SLE, challenges remain in applying CAR-T therapy to other autoimmune diseases. In some cases, autoantibodies are produced by plasmablasts or plasma cells that lack CD19 expression, allowing them to evade CD19-targeted

therapies.<sup>12</sup> Further research is needed to refine and expand CAR-T cell strategies, adapting them to the specific immunopathology of various autoimmune diseases.

### **ADC: Leveraging Cancer Therapy Success for Autoimmune Treatment**

Antibody-drug conjugates (ADCs), which combine the precision of monoclonal antibodies with the potent cytotoxicity of cytotoxic payloads, are well-established in cancer therapies but now show promise for autoimmune diseases. Given the limitations of antibody-based treatments (e.g., anti-TNF monoclonal antibody) for conditions like rheumatoid arthritis (RA), ADCs offer a more targeted approach by selectively eliminating pathogenic immune cell subsets, such as autoreactive T or B cells, while sparing protective immunity. Several studies have shown promising results with ADCs targeting TNF,<sup>13</sup> CD74,<sup>14</sup> CD30,<sup>15</sup> CD163<sup>16</sup> and CD6<sup>17</sup>. By delivering immunomodulatory or cytotoxic payloads directly to pathogenic cells, ADCs could overcome limitations of systemic immunosuppression, reducing off-target toxicity and improving therapeutic precision in autoimmune conditions.

For instance, D30, a TNF receptor family member, is elevated in RA serum and joint fluid, making it a potential therapeutic target. Brentuximab vedotin (BV), a CD30-targeting antibody-drug conjugate (ADC) combining brentuximab with antimitotic MMAE, is currently being investigated for RA

treatment. In CAIA mouse models, BV significantly reduced arthritis severity at a higher dose (70 mg/kg), while the lower dose (30 mg/kg), equivalent to the human clinical dose, showed no significant effect<sup>16</sup>.

While ADCs have shown promise for autoimmune diseases, their adaptation for presents various challenges. Autoimmune targets like CD30 may be expressed on both pathogenic and protective immune cell populations, increasing the risk of unintended immunosuppression. Additionally, ADC designs should enhance safety profiles, particularly in linker stability, to prevent off-target payload release and long-term immune cell depletion. Further research is needed to refine target selection and optimize payload efficacy to develop next-generation ADCs featuring tunable cytotoxicity suitable for prolonged autoimmune disease therapy.

### **Conclusion and Future Outlook**

Precision-targeted therapies are transforming autoimmune disease management, addressing the limitations of conventional immunosuppressants. CAR-T cell therapy offers a promising approach by selectively eliminating autoreactive B and T cells, with CD19-targeted therapies demonstrating sustained disease remission in conditions like systemic lupus erythematosus (SLE). Meanwhile, ADCs leverage antibody specificity to deliver cytotoxic payloads, refining immune modulation strategies for autoimmune

diseases. As research advances, optimizing these therapies for broader applications will be crucial. Future investigations should focus on refining CAR-T targets beyond CD19, adapting ADC payloads for autoimmune specificity, and mitigating off-target effects. Continued exploration of immunotherapy will pave the way for more precise, long-lasting treatments<sup>18,19</sup>.

### Sino Biological's Efforts on Autoimmune Disease Research

Sino Biological offers comprehensive solutions for autoimmune disease research, providing reagents for nearly 50 diseases. Our portfolio includes target proteins, cytokines, and kinases, as well as biomarker research tools. By delivering high-quality reagents for biomarker analysis and drug discovery, Sino Biological supports early detection and the development of

targeted therapies. Additionally, we also provide CAR-T therapy development solutions and ADC development solutions. Our solutions are dedicated to providing high-quality reagents and technical support for global drug R&D companies and life science research institutions.

### References

1. Davidson, A., & Diamond, B. (2001). Autoimmune diseases. New England Journal of Medicine, 345(5), 340–350. https://doi.org/10.1056/nejm200108023450506

- 2. Schett, G., Mackensen, A., & Mougiakakos, D. (2023). CAR T-cell therapy in autoimmune diseases. The Lancet, 402(10416), 2034–2044. https://doi.org/10.1016/s0140-6736(23)01126-1
- 3. Pisetsky, D. S. (2023). Pathogenesis of autoimmune disease. Nature Reviews Nephrology, 19(8), 509–524. https://-doi.org/10.1038/s41581-023-00720-1
- 4. Li, Y., Lyu, Z., Chen, Y., Fang, Y., & Yang, L. (2024). Frontiers in CAR-T cell therapy for autoimmune diseases. Trends in Pharmacological Sciences, 45(9), 839–857. https://doi.org/10.1016/j.tips.2024.07.005
- 5. Rubin, S. J. S., Bloom, M. S., & Robinson, W. H. (2019). B cell checkpoints in autoimmune rheumatic diseases. Nature Reviews Rheumatology, 15(5), 303–315. https://doi.org/10.1038/s41584-019-0211-0
- 6. Vukovic, J., Abazovic, D., Vucetic, D., & Medenica, S. (2024). CAR-engineered T cell therapy as an emerging strategy for treating autoimmune diseases. Frontiers in Medicine, 11. https://doi.org/10.3389/fmed.2024.1447147
- 7. Song, Y., Li, J., & Wu, Y. (2024). Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduction and Targeted Therapy, 9(1). https://doi.org/10.1038/s41392-024-01952-8
- 8. Fugger, L., Jensen, L. T., & Rossjohn, J. (2020). Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell, 181(1), 63–80. https://doi.org/10.1016/j.cell.2020.03.007
- 9. Dixit, T., Vaidya, A., & Ravindran, S. (2024). Therapeutic potential of antibody-drug conjugates possessing bifunctional anti-inflammatory action in the pathogenies of rheumatoid arthritis. Arthritis Research & Therapy, 26(1). https://doi.org/10.1186/s13075-024-03452-0
- 10. Mougiakakos, D., Krönke, G., Völkl, S., Kretschmann, S., Aigner, M., Kharboutli, S., Böltz, S., Manger, B., Mackensen, A., & Schett, G. (2021). CD19-Targeted CAR T cells in refractory systemic lupus erythematosus. New England Journal of Medicine, 385(6), 567–569. https://doi.org/10.1056/nejmc2107725
- 11. Mackensen, A., Müller, F., Mougiakakos, D., Böltz, S., Wilhelm, A., Aigner, M., Völkl, S., Simon, D., Kleyer, A., Munoz, L., Kretschmann, S., Kharboutli, S., Gary, R., Reimann, H., Rösler, W., Uderhardt, S., Bang, H., Herrmann, M., Ekici, A. B., . . . Schett, G. (2022). Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nature Medicine, 28(10), 2124–2132. https://doi.org/10.1038/s41591-022-02017-5
- 12. Rampotas, A., Richter, J., Isenberg, D., & Roddie, C. (2024). CAR-T cell therapy embarks on autoimmune disease. Bone Marrow Transplantation. https://doi.org/10.1038/s41409-024-02429-6
- 13. Buttgereit, F., Aelion, J., Rojkovich, B., Zubrzycka Sienkiewicz, A., Chen, S., Yang, Y., Arikan, D., D'Cunha, R., Pang, Y., Kupper, H., Radstake, T., & Amital, H. (2022). Efficacy and Safety of ABBV 3373, a Novel Anti-Tumor Necrosis Factor Glucocorticoid Receptor Modulator Antibody-Drug Conjugate, in Adults with Moderate to Severe Rheumatoid Arthritis Despite Methotrexate Therapy: A Randomized, Double Blind, Active Controlled Proof of Concept Phase IIa Trial. Arthritis & Rheumatology, 75(6), 879-889. https://doi.org/10.1002/art.42415
- 14. Brandish, P. E., Palmieri, A., Antonenko, S., Beaumont, M., Benso, L., Cancilla, M., Cheng, M., Fayadat-Dilman, L., Feng, G., Figueroa, I., Firdos, J., Garbaccio, R., Garvin-Queen, L., Gately, D., Geda, P., Haines, C., Hseih, S., Hodges, D., Kern, J., . . . Zielstorff, M. (2018). Development of Anti-CD74 Antibody-Drug conjugates to target glucocorticoids to immune cells. Bioconjugate Chemistry, 29(7), 2357–2369. https://doi.org/10.1021/acs.bioconjchem.8b00312
- 15. Matsuhashi, M., Nishida, K., Nasu, Y., Nakahara, R., Watanabe, M., Hotta, Y., & Ozaki, T. (2020). SAT0010 ANTI-CD30 IMMUNO-THERAPY AMELIORATES BONE AND CARTILAGE DESTRUCTION IN EXPERIMENTAL MODEL OF RHEUMATOID ARTHRITIS IN MICE. Annals of the Rheumatic Diseases, 79(Suppl 1), 935.1-935. https://doi.org/10.1136/annrheumdis-2020-eular.1039
- 16. Lee, H., Bhang, S. H., Lee, J. H., Kim, H., & Hahn, S. K. (2017). Tocilizumab–Alendronate conjugate for treatment of rheumatoid arthritis. Bioconjugate Chemistry, 28(4), 1084–1092. https://doi.org/10.1021/acs.bioconjchem.7b00008
- 17. Zhang, L., Luo, L., Chen, J. Y., Singh, R., Baldwin, W. M., Fox, D. A., Lindner, D. J., Martin, D. F., Caspi, R. R., & Lin, F. (2023). A CD6-targeted antibody-drug conjugate as a potential therapy for T cell-mediated disorders. JCI Insight, 8(23). https://doi.org/10.1172/jci.insight.172914
- 18. Hartmann, J., Schüßler Lenz, M., Bondanza, A., & Buchholz, C. J. (2017). Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Molecular Medicine, 9(9), 1183–1197. https://doi.org/10.15252/emmm.201607485
- 19. Melenhorst, J. J., Chen, G. M., Wang, M., Porter, D. L., Chen, C., Collins, M. A., Gao, P., Bandyopadhyay, S., Sun, H., Zhao, Z., Lundh, S., Pruteanu-Malinici, I., Nobles, C. L., Maji, S., Frey, N. V., Gill, S. I., Loren, A. W., Tian, L., Kulikovskaya, I., . . . June, C. H. (2022). Author Correction: Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 612(7941), E22. https://doi.org/10.1038/s41586-022-05376-8

### www.sinobiological.com

Sino Biological US Inc. (U.S.A.)

Tel: +1-215-583-7898

Email: cro\_us@sinobiologicalus.com

Sino Biological, Inc. (Global)

Tel: +86-400-890-9989

Email: cro-service@sinobiological.com

Sino Biological Europe GmbH (Europe)

Tel: +49(0)6196 9678656

Email: cro-service@sinobiological.com

株式会社日本シノバイオロジカル (Japan)

Tel: 044-400-1330

Email: cro-service@sinobiological.co.jp





### **Expert Opinion on Drug Discovery**



ISSN: 1746-0441 (Print) 1746-045X (Online) Journal homepage: www.tandfonline.com/journals/iedc20

### Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system

Hong-Wei Guo, Zhi-Ming Ye, Si-Qi Chen & Kevin J McElwee

**To cite this article:** Hong-Wei Guo, Zhi-Ming Ye, Si-Qi Chen & Kevin J McElwee (2024) Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system, Expert Opinion on Drug Discovery, 19:11, 1321-1338, DOI: 10.1080/17460441.2024.2409660

To link to this article: <a href="https://doi.org/10.1080/17460441.2024.2409660">https://doi.org/10.1080/17460441.2024.2409660</a>

|                | Published online: 03 Oct 2024.            |
|----------------|-------------------------------------------|
|                | Submit your article to this journal 🗗     |
| ılıl           | Article views: 288                        |
| Q <sup>L</sup> | View related articles 🗗                   |
| CrossMark      | View Crossmark data ☑                     |
| 4              | Citing articles: 6 View citing articles 🗹 |

### Taylor & Francis Taylor & Francis Group

### **REVIEW**



### Innovative strategies for the discovery of new drugs against alopecia areata: taking aim at the immune system

Hong-Wei Guo<sup>a</sup>, Zhi-Ming Ye<sup>b</sup>, Si-Qi Chen<sup>b</sup> and Kevin J McElwee<sup>c,d</sup>

<sup>a</sup>Department of Dermatology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China; <sup>b</sup>Guangdong Medical University, Zhanjiang, Zhanj

### **ABSTRACT**

**Introduction:** The autoimmune hair loss condition alopecia areata (AA) exacts a substantial psychological and socioeconomic toll on patients. Biotechnology companies, dermatology clinics, and research institutions are dedicated to understanding AA pathogenesis and developing new therapeutic approaches. Despite recent efforts, many knowledge gaps persist, and multiple treatment development avenues remain unexplored.

**Areas covered:** This review summarizes key AA disease mechanisms, current therapeutic methods, and emerging treatments, including Janus Kinase (JAK) inhibitors. The authors determine that innovative drug discovery strategies for AA are still needed due to continued unmet medical needs and the limited efficacy of current and emerging therapeutics. For prospective AA treatment developers, the authors identify the pre-clinical disease models available, their advantages, and limitations. Further, they outline treatment development opportunities that remain largely unmapped.

**Expert opinion:** While recent advancements in AA therapeutics are promising, challenges remain, including the lack of consistent treatment efficacy, long-term use and safety issues, drug costs, and patient compliance. Future drug development research should focus on patient stratification utilizing robust biomarkers of AA disease activity and improved quantification of treatment response. Investigating superior modes of drug application and developing combination therapies may further improve outcomes. Spirited innovation will be needed to advance more effective treatments for AA.

### **PLAIN LANGUAGE SUMMARY**

Alopecia areata (AA) is an autoimmune condition that causes hair loss. It significantly affects a patient's emotional well-being and quality of life. Companies, clinics, and researchers are working hard to understand AA and create better treatments. Despite these efforts, there are still many unanswered questions, and new treatment methods still need to be explored.

This review summarizes how AA develops, current treatment options, and new therapies like Janus Kinase (JAK) inhibitor drugs. JAK inhibitors show promise, but they are not fully effective for everyone. We emphasize that there is still a need for new and innovative drug discovery strategies to meet the medical needs of AA patients, as current treatments often fall short.

For researchers and developers of AA treatments, we discuss the available pre-clinical models used to test new drugs, highlighting their strengths and weaknesses. We also point out new areas for treatment development that have not been thoroughly investigated.

Although recent advancements in AA treatments are encouraging, several challenges remain. These include inconsistent effectiveness of treatments, safety concerns with long-term use, high drug costs, and issues with patient adherence to treatment programs. We believe future research should focus on identifying biomarkers that can help tailor treatments to individual patients and improving measurements of treatment success. Additionally, exploring better ways to apply drugs and combining different therapies together may enhance treatment outcomes.

Ultimately, innovative approaches and spirited efforts will be required to develop more effective treatments for AA to improve the lives of those affected by this challenging condition.

### **ARTICLE HISTORY**

Received 28 July 2024 Accepted 24 September 2024

### **KEYWORDS**

Alopecia areata; autoimmune disease; disease pathogenesis; JAK inhibitors; disease models; drug development; hair follicles; immune privilege; hair regrowth

### 1. Introduction

Alopecia areata (AA) is a complex autoimmune disease characterized by unpredictable non-scarring hair loss which can be observed on the scalp or any other hairy surface on the body [1]. AA can either resolve on its own, progress to cycles of repeated relapse and recovery, or it may persist over a prolonged period of

time [2,3]. Though the first onset of AA can occur at any age, current data shows only around 20% of the patients are over 40 years old, making it an issue of particular concern for young adults [4]. The sudden onset of AA can significantly diminish a patient's self-confidence and quality of life (QoL), and it imposes a substantial psychological burden on affected individuals [5–7].



### Article highlights

- · Alopecia areata (AA) is primarily driven by an autoimmune response where cytotoxic CD8+ T cells attack hair follicles, leading to a nonscarring, potentially reversible, form of hair loss,
- Existing AA treatments, specifically corticosteroids and contact sensitizers, offer limited and variable efficacy; whereas JAK inhibitors have shown promise in recent clinical trials, their long-term safety and efficacy remain uncertain.
- Innovative drug discovery strategies are still required to address the unmet medical needs of AA patients, focusing on improving efficacy for more patients, reducing long-term safety issues, lowering costs, and increasing patient compliance.
- Several in vitro and in vivo pre-clinical models are available for AA research and therapeutics development, each with specific advantages and limitations.
- The drug discovery process for AA is hindered by the heterogeneity of the condition, our still relatively poor understanding of the AA disease mechanisms, a lack of validated biomarkers, and limitations around clinical trial designs for AA.
- Future research should focus on patient stratification using robust biomarkers to tailor treatments and improve the accuracy of treatment response assessments.
- Exploration of alternative molecular pathways, such as hair follicle immune privilege promotion and interference with hair follicle antigen presentation, could provide other avenues for AA treatment development beyond systemic immunosuppressive drugs.
- Improving drug delivery methods, systematic optimization of new and existing treatments, and developing adjunctive combinatory therapies may enhance treatment outcomes and improve patient adherence.

### 1.1. Alopecia areata clinical diagnosis

AA can occur in any hair-bearing area, but mostly affects the scalp. The clinical presentation varies in the extent and configuration of hair loss involving patches, ophiasis (occipital scalp), ophiasis inversus or sisapho (top and vertex), diffuse AA, alopecia totalis (whole scalp), and alopecia universalis (whole scalp and body hair) [8,9]. Most cases are straightforward to diagnose, especially patchy AA which is the most common presentation. In contrast, diffuse AA can be difficult to differentiate from telogen effluvium [3,10]. If necessary, a biopsy can be done; the acute disease phase characteristically shows a lymphocytic infiltrate surrounding dystrophic anagen hair follicles (HFs) in a 'swarm of bees' pattern. As the disease progresses to a chronic state, there is an increase in catagen/telogen stage HFs and development of miniaturized hairs [11].

### 1.2. Alopecia areata disease pathogenesis

Both cellular and humoral immunity are active during AA onset, though cellular immunity plays the primary pathogenic role [12,13]. Multiple studies have provided data consistent with a cytotoxic CD8<sup>+</sup> T lymphocyte cell (CTL) mediated attack on HFs that leads to hair loss [14–18]. A few studies suggest CD8<sup>+</sup> CTLs are assisted in their HF attack by CD4<sup>+</sup> T cells in their classic 'helper' role [17,19–23]. Some of the potential autoantigen targets for autoreactive CTLs have been identified, but most remain unknown at this time. The most salient endogenous antigens investigated thus far include hair-follicle keratinocyteexpressed trichohyalin and keratin 16 and melanocyte-related proteins such as tyrosinase-related protein 2 [24].

### 1.3. Hair follicle immune privilege

Anagen stage HFs exhibit immune privilege (IP) [15,25]. The essential function of IP is to protect and preserve high-frequency stem cells for HF regeneration and cycling. Several factors are considered to be important in providing HF IP, including physical barriers that inhibit lymphocyte infiltration [26], the downregulation of major histocompatibility complex I (MHC-I) [27], the expression of immunosuppressive factors in the local environment [15], the maintenance and distribution of immunoregulatory cells [28], low NKG2D ligand expression, and the downregulation of NKG2D receptors on local NK cells [29]. Numerous immunosuppressive factors are produced by HFs, including transforming growth factor beta (TGFβ), alpha-melanocyte-stimulating hormone (αMSH), interleukin (IL)10, macrophage migration inhibitory factor (MIF), somatostatin, vasoactive intestinal peptide (VIP), and programmed death-ligand 1 (PDL1) among others [15].

### 1.4. Hair follicle immune privilege collapse in alopecia areata

A popular explanation for the pathogenesis of AA focuses on the collapse of HF IP [15]. Under skin-localized inflammatory and/or stress stimulations, including psychological and environmental stressors, HFs in individuals carrying susceptibility genes for AA can respond with aberrant expression of MHC-I molecules and IP collapse [29]. As part of the physiological stress response, the affected HFs express pro-inflammatory chemokines and receptors [18,30], toll-like receptors (TLRs) [31], and cell adhesion molecules [32,33]. The initial HF damage and upregulation of danger signals activate variable combinations of local antigen-presenting cells (APCs) [18], skin resident lymphocytes [34], NK cells [35], and mast cells [36].

### 1.5. Cytotoxic CD8 T cells mediate the attack on hair follicles with CD4+ T cells assistance

While such a scenario begins in a highly localized fashion, migration of APCs to skin draining lymph nodes may promote a much larger lymphocytic response from autoreactive CTLs. Activated circulating CD8<sup>+</sup> cells, likely the primary executors of overt AA, migrate to danger signal-expressing HF peripheries [34], where they recognize exposed autoantigens in IP collapsed HFs [15]. CD8<sup>+</sup> lymphocytes mediate an immune response against HF-specific antigen epitopes primarily characterized by a Th1 cytokine response mode [37]. Notably, however, there is also evidence of a significant Th2 response in at least a subset of AA patients, consistent with a supporting role for CD4<sup>+</sup> cells [38]. Targeting and damaging anagen growth phase HFs by pathogenic CD8<sup>+</sup> T cells leads to acute AA development, whereas secondary humoral immunity might play a role in chronic subacute AA development and alopecia universalis [13].

### 1.6. The significant role of IFNy and associated signals in AA

The increased MHC-I expression facilitates the CD8<sup>+</sup> T cell attack against exposed HF antigens. The associated IFNy

secretion from infiltrating lymphocytes can further contribute to IP collapse [15] and trigger local CTL reactivities leading to the upregulation of NKG2D ligands like MICA and ULBP3/6 [29], proinflammatory cytokines [37], and chemokines [39], in adjacent HFs. Consequently, HF IP collapse ripples out in a wave-like manner to produce expanding lesions of hair loss [40]. Depending on the intensity of the inflammatory insult, HFs may remain in a dystrophic anagen state, unable to produce meaningful hair fiber, or alternatively, are pushed into a premature telogen state [11]. The presence of lymphocytes around HFs may prevent them from reentering a subsequent growth phase as normal. While the inflammatory infiltrate dissipates during telogen, any attempt by HFs to return to anagen growth is met with rapid lymphocytic reinfiltration [9].

While there are holes in this hypothesis of AA pathogenesis, the cumulative research evidence thus far generally fits the scenario. Regardless of the initial disease development cascade, there is clear evidence of CD8<sup>+</sup> CTLs being the drivers of AA, with CD4<sup>+</sup> cells in a supportive role. As such, most current treatments focus on modulating inflammatory cell infiltrate activity.

### 2. Current alopecia areata treatments

The course of AA is unpredictable, but in general, treatment of extensive AA is less likely to be successful than for patients with limited AA. First-line therapies for patchy AA are topical and intralesional corticosteroids [41]. Contact immunotherapy, such as diphenylcyclopropenone (DPCP) or squaric acid dibutyl ester (SADBE) sensitization, can be effective in more extensive AA [42]. Immunosuppressive agents such as cyclosporine, methotrexate, and azathioprine also demonstrate hair regrowth in some AA patient subsets [43]. Biological agents, particularly tumor necrosis factor (TNF) inhibitors, have been

tried in AA, but the results have not been encouraging [44]. Recently, some JAK inhibitor drugs have been approved as AA treatments, while still more are undergoing clinical trial evaluation [45,46]. Each drug has its own advantages and disadvantages (Table 1), none are curative, and no treatment has been identified that is universally effective.

### 2.1. Corticosteroids for alopecia areata

Corticosteroid drug treatments for AA can be administered topically, intralesionally, or systemically to reduce local inflammation and suppress the immune attack on HFs. The effectiveness of topical corticosteroids in treating AA can be limited given follicular inflammation around HF bulbs may be 4-7 mm deep in the skin [47]. Intralesional corticosteroids, directly injected into AA lesions to enable high local concentrations of the drug, produce a more potent immunosuppressive effect at the site of hair loss [42]. Intralesional injections are often used for limited and localized areas of AA. Systemic corticosteroid administration provides widespread immunosuppression, which is effective in promoting hair regrowth in AA patients, but side effect risks are significant (Table 1) [41].

### 2.2. Immunomodulatory drugs

Contact-sensitizing chemicals such as DPCP, SADBE, and the irritant anthralin are employed in the treatment of AA [41]. The agents seem to leverage localized immune modulation to counteract the autoimmune mechanisms underlying the AA disease. They induce an allergic contact dermatitis or irritant dermatitis, and this inflammatory response is hypothesized to redirect the immune attack away from HFs [42]. The approach has better efficacy results for patchy AA as compared to more extensive AA [48], but there are high relapse rates and side

Table 1. Current standard treatments for alopecia areata.

| Drug treatment                                                                            | Advantages                                                                                                                                                                                                                                             | Disadvantages                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topical corticosteroids (betamethasone valerate; clobetasol propionate; mometasone; etc.) | <ol> <li>(1) Cheap and readily available</li> <li>(2) Easy to apply, can be applied at home</li> <li>(3) Minimal systemic side effect risk at low dose</li> <li>(4) Can be used on children</li> </ol>                                                 | <ol> <li>Limited efficacy for AA</li> <li>Skin penetration can be limited</li> <li>Risk of localized skin atrophy, striae, telangiectasia, and/or folliculitis</li> <li>Possible risk of osteoporosis with high cumulative dose [162]</li> </ol>                                                                                 |
| Intralesional corticosteroids (triamcinolone acetonide; etc.)                             | <ol> <li>Relatively easy to apply by injection</li> <li>Often efficacious for limited and localized patches of AA</li> <li>Can be used as an adjunctive therapy for extensive disease</li> </ol>                                                       | <ol> <li>Must be applied in a clinic setting</li> <li>Can be discomfort during injection procedure</li> <li>Risk of localized skin atrophy</li> <li>Upper maximal exposure limit per patient that restricts the use of intralesional corticosteroids over larger areas of hair loss</li> </ol>                                   |
| Systemic corticosteroids (prednisone; etc.)                                               | <ol> <li>(1) Systemic administration provides widespread immunosuppression</li> <li>(2) Can be provided as pills for use at home with monitoring</li> <li>(3) Can be used in a pulse-dose or tapered-dose regimen to limit side effect risk</li> </ol> | <ol> <li>Risk of adrenal suppression</li> <li>Risk of hyperglycemia</li> <li>Risk of stomach upset</li> <li>Risk of fluid buildup and lower leg swelling</li> <li>Risk of weight gain</li> <li>Risk of hypertension</li> <li>Risk of osteoporosis</li> <li>Risk of adverse effects on bone growth</li> </ol>                     |
| Contact sensitizing/irritating agents (DPCP and SADBE, anthralin)                         | <ol> <li>Topical method of application</li> <li>Can be used to treat large areas of hair loss, including alopecia totalis</li> <li>Can be effective, even for patients with multi-year chronic AA</li> </ol>                                           | <ol> <li>Dosage needs to be adjusted for each patient</li> <li>Relatively labor-intensive treatment process in clinic</li> <li>Risk of dermatitis and erythema</li> <li>Risk of severe blistering</li> <li>Risk of regional lymphadenopathy</li> <li>Patients with atopy are contraindicated as poor responders [156]</li> </ol> |

effect risks such as persistent dermatitis, painful cervical lymphadenopathy, generalized eczema, and urticaria (Table 1).

### 3. Emerging treatments for alopecia areata

Many candidates that previously received attention for their potential as AA therapeutics have fallen by the wayside and do not seem to be currently under active investigation (Table 2). In part, this may be due to a lack of attention and funding as JAK (Janus Kinase) inhibitor drugs have claimed the spotlight in recent years.

### 3.1. JAK inhibitors

Janus kinases are a class of tyrosine kinases that play a pivotal role in cytokine signaling, particularly in regulating the proliferation, differentiation, and function of immune cells. JAK inhibitors, through blocking the JAK/Signal Transducer and Activator of Transcription (STAT) signaling pathway, reduce the production and signal reception of cytokines associated with AA, including IFNy, thereby alleviating the inflammatory response against HFs [49–51]. These proinflammatory cytokines are required for immune cell signaling, but they may also directly inhibit hair growth [15]. In addition, JAK inhibitors may also directly help to restore the normal HF growth cycle by advancing HFs into anagen [52]. The development of JAK inhibitors for AA is still very active with several clinical trials

currently ongoing (Table 3). While clinical study results look very promising, their safety remains an area of ongoing investigation [46]. It is too early in the development of JAK inhibitors to fully identify the side effect risk profile for AA patients, but the use of JAK inhibitors for other diseases can be associated with multiple adverse reactions, from increased risk of opportunistic infections to adverse impact on liver function [53].

### 4. The need for innovative strategies in drug discovery for alopecia areata

Despite recent advances in AA treatment, the current landscape remains suboptimal. There is still an urgent need for drug discovery and AA treatment innovation for several reasons:

### 4.1. High population prevalence

While past studies suggested a lifetime risk for AA of 1.7% [54], more recent assessments have revised the rate upwards to 2.1% [55]. Further, studies from the U.S.A. and U.K. suggest that AA is significantly more common in Black, Latino, and Asian ethnicities as compared to White people and it is expected that these differentials will be reflected in other countries' AA prevalence rates [56,57]. Overall, limited data suggest the global AA incidence rate is increasing [58–61].

Table 2. Therapeutic modalities recently considered for development to treat alopecia areata

| ·              | Description Mode of Action in Algebraic Areas                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Treatment Name | Potential Mode of Action in Alopecia Areata                                                                                                                                                                                                                                                                                                                 | Alopecia Areata Related Trial Data                                                                                                                                                                                                                                                                                                                    |
| Secukinumab    | Monoclonal antibody targeting interleukin-17A (IL-17A), primarily expressed in Th17 cells. By binding to IL-17A, Secukinumab may reduce production of chemokines involved in AA pathogenesis, slowing or halting disease progression [163]                                                                                                                  | In a double-blind, randomized pilot study involving 11 AA patients with 60% scalp involvement, no patient reached the primary endpoint of SALT50 post-treatment with secukinumab [164]. In a 2021 study on secukinumab treatment for psoriasis, a mild therapeutic response to AA was observed [165]                                                  |
| Dupilumab      | Monoclonal antibody blocks IL-4 receptor (IL-4 Rα) and inhibits IL-4 and IL-13 which mediate Th2 immune activity [166]. Provides benefits for some patients with atopic dermatitis-associated AA [154]                                                                                                                                                      | By week 48, 32.5% of patients treated with dupilumab achieved<br>a SALT30 response, 22.5% reached SALT50, and 15% attained<br>SALT75. Patients with higher baseline IgE levels showed better<br>response to dupilumab [167]                                                                                                                           |
| Tralokinumab   | Inhibits proinflammatory cytokine interleukin-13 (IL-13). Data for AA is conflicted, with some suggestion that IL-13 upregulation is a component of successful treatment using DPCP [168]                                                                                                                                                                   | In treating AD with concomitant AA, tralokinumab promoted a reduction in the AD EASI score to 8 points and a decrease in the AA SALT score to 14 within 3 months. By six months, clinical remission of AD (EASI score of 2) and nearly complete hair regrowth (SALT score of 2) was achieved [169]                                                    |
| Ustekinumab    | Monoclonal antibody blocks the p40 subunit of IL-12 and IL-23. These cytokines play a key role in Th1 and Th17 cell-mediated responses [38]. Data on significance for AA is conflicted [170,171]                                                                                                                                                            | No trials of ustekinumab for adult AA treatment published to date. In<br>a pediatric study, three AA individuals received ustekinumab<br>treatment, all experienced hair regrowth with two achieving<br>complete hair recovery [152]                                                                                                                  |
| Abatacept      | Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and IgG1 fusion protein (CTLA4-Ig), selectively attenuates T cell activation. Inhibits the CD80/86:CD28 co-stimulatory pathway signaling that is required for T cell activation in AA [18,109]                                                                                                         | In an open-label, single-arm study, 15 AA patients were administered abatacept 125 mg subcutaneously daily for 24 weeks. One patient experienced significant hair regrowth, with 91% hair regrowth by 24 weeks. Four other patients observed approximately 15%-25% hair regrowth at week 24, and another four patients showed a 3%-10% response [172] |
| Etrasimod      | Selective sphingosine-1-phosphate (S1P) receptor modulator that exhibits high affinity for S1P1, S1P4, and S1P5. Etrasimod regulates lymphocyte trafficking, reducing circulation of lymphocytes, and impeding their ability to follow S1P gradients toward inflamed areas. This potentially may reduce immune cell attack on HFs in patients with AA [173] | Multicenter, randomized, double-blind, placebo-controlled clinical trial was launched to assess the safety and efficacy of Etrasimod in AA, however the data has not yet been published [174]                                                                                                                                                         |
| Low dose IL-2  | Low-dose IL-2 selectively stimulates Treg cell proliferation, while high doses predominantly boost effector T cell expansion [175]. In AA, a reduction in Tregs may lead to the collapse of immune homeostasis. Low-dose IL-2 treatment could activate and expand Tregs, restoring the immune balance [176]                                                 | A 52-week multicenter prospective placebo-controlled study on low-dose IL-2 treatment for moderate to severe AA evaluated its clinical efficacy and impact on NK cell and Tregs. Despite significant elevation in peripheral blood Tregs during treatment, it did not substantially promote hair regrowth in severe AA patients [177].                |

Table 3. JAK inhibitors under investigation for treating alopecia areata.

| JAK Inhibitor<br>Name         | Mode of Action                                                                                                                      | Alopecia Areata Related Trial Data                                                                                                                                                                                                 |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Baricitinib<br>(INCB28050)    | First JAK inhibitor approved by the FDA for AA, inhibits both JAK1 and JAK2 [178]                                                   | In two clinical trials for adults with severe AA, 40.9% and 36.8% exhibited a SALT score ≤ 20 at week 52 when receiving 4 mg baricitinib [179]                                                                                     |
| Brepocitinib<br>(PF-06700841) | A dual inhibitor that selectively targets TYK2 and JAK1                                                                             | SALT30 was achieved by 64% of patients receiving brepocitinib by 24 weeks [180]. Brepocitinib 30 mg may have the best relative effect in reducing the SALT score [64]                                                              |
| Deuruxolitinib<br>(CTP-543)   | A JAK1/2 inhibitor                                                                                                                  | Of patients receiving 8 mg and 12 mg deuruxolitinib, 29.6% and 41.5% achieved SALT score ≤ 20 by 24 weeks [181]. Deuruxolitinib 12 mg may have a superior relative effect in reducing the SALT score [64]                          |
| lvarmacitinib<br>(SHR0302)    | Highly selective inhibitor of JAK1                                                                                                  | Of 94 patients, the reduction in SALT score for 2, 4, and 8 mg ivarmacitinib groups were –30.51%, –56.11%, and –51.01%, respectively at 24 weeks [182]                                                                             |
| Ritlecitinib<br>(PF-06651600) | Selective JAK3/TEC kinase inhibitor drug. Inhibits TEC kinases like ITK, impairing cytolytic functions of NKG2D+CD8+ T cells [183]. | SALT30 was achieved by 50% of patients receiving ritlecitinib by 24 weeks [180]. Of 105 adolescents receiving 30-50 mg ritlecitinib, by Week 48, 25%-50% of patients had a SALT score ≤ 20 [184]                                   |
| Ruxolitinib                   | A JAK1/2 predominant inhibitor                                                                                                      | Limited data from case reports and one open label study suggests 20 mg ruxolitinib twice daily can elicit hair regrowth in 75% of patients [185]                                                                                   |
| Tofacitinib                   | A selective inhibitor of JAK1 and JAK3                                                                                              | Of 202 patients after 18 months of treatment, 55.9%, 42.6% and 29.2% achieved 50%, 75% and 90% reductions in SALT scores respectively [186]. Of 90 patients, 58% achieved greater than 50% change in SALT score by 18 months [187] |
| Upadacitinib                  | A selective JAK1 inhibitor                                                                                                          | Mostly case reports published thus far. Has shown therapeutic effects in patients with severe atopic dermatitis and AA, promoting hair growth in 53% of AA patients [188].                                                         |

The exact causes of this increase remain unclear, but potential factors include heightened awareness of AA and improved diagnosis in dermatology clinics worldwide. Further, while genetic predisposition to AA may not change, it is possible that environmental triggers for AA onset have become more common, such as chronic stress promoting neurogenic inflammation [62] or dietary changes enabling autoimmunity [63]. A robust therapeutic arsenal to address the diverse needs of this expanding global patient cohort is required.

### 4.2. Unmet medical needs

The guest for treatments that offer more substantial hair growth and are effective for a greater percentage of AAaffected patients, with fewer side effects, remains an unmet medical need in AA management. Patients and clinicians alike seek therapies that provide significant hair growth, with minimal adverse effects, in a relatively simple method of application. Topical or intralesional treatments are particularly preferred due to their localized action and reduced systemic toxicity. Topical JAK inhibitor formulations have been explored, but thus far they have not demonstrated significant efficacy for AA in clinical trials [64,65]. Topical contact-sensitizing treatments are labor-intensive; the dosage and frequency of application need to be tailored to each individual to achieve maximum benefit while minimizing local side effects. Therefore, there is still a pressing demand for the development of new topical drugs that can meet these unmet treatment criteria as well as to enhance patient compliance.

### 4.3. Limited efficacy of current treatments with long-term use

Current treatments for AA offer variable efficacy and are often inadequate for sustained disease control. Around 33% of patients develop chronic AA [2]. In practice, current drugs, including JAK inhibitors, are unlikely to be used over many years due to the requirement for regular clinic attendance for treatment application and/or monitoring, and the cumulative risk of side effect development with long-term use. There is also the potential for some patients to develop resistance to a treatment over time, and occasionally to experience a 'rebound effect' upon discontinuation of treatment [66]. A minority of patients may also find that if they later reinitiate treatment, the degree of hair growth response is diminished [65,67,68]. While JAK inhibitors have shown promise in recent clinical trials, their long-term effectiveness is unknown [69]. Novel therapies are still needed that can provide more consistent and robust hair regrowth outcomes with long-term treatment plans.

### 4.4. Psychological impacts on health

Remarkably, over half of all AA cases are reportedly linked to stress-related factors [70]. Acute stress can cause overactivation of the central and peripheral nervous systems, leading to the development and progression of autoimmune diseases [71]. While stress can induce AA, equally, AA can induce stress. It is generally accepted that the visible nature of AA hair loss can lead to considerable psychological distress, affecting patients' self-esteem and mental health [72]. Studies with rodent models suggest that the link may not be purely psychological and that the inflammation associated with AA can modulate stress hormones [73]. Individuals with AA can demonstrate diminished capabilities in coping with and managing emotional and stress-related challenges [74,75]. The severity of scalp hair loss displays a strong, positive correlation with the degree to which patients' QoL is adversely affected [76]. While the mechanisms that link AA and stress together are not fully understood, effective treatments should



significantly relieve psychological burden and improve AA patients' QoL.

### 4.5. Potential physical impacts on health

There is also some evidence for a more direct biochemical link between chronic AA inflammation and aberrant expression of systemic disease phenotypes. Studies have shown that people who develop AA are 43% more likely to subsequently develop a new onset of an atopic condition, and 45% more likely to develop another autoimmune disease [77]. AA patients are more likely to develop thyroid disease [78], inflammatory arthritis [79], and psoriasis [80]. It is also possible that long-term AA is linked to an increased risk of cardiovascular diseases, though the data are conflicting [81-84]. Whether these links are due to a genetic pre-disposal toward inflammation and autoimmunity or whether the onset of AA directly activates other inflammatory cascades is unclear. Never-the-less, modulating inflammation and promoting hair growth with new effective treatments could potentially mitigate other health risks associated with AA.

### 4.6. Technological advancements

Technological advancements inevitably provide new opportunities for the development of innovative treatments that target novel pathways in AA disease pathogenesis. Highthroughput screening, genomic and proteomic technologies, and advanced bioinformatics have facilitated the identification of new drug targets and pathogenic mechanisms for other diseases [85]. It seems reasonable to expect that similar technologies can also identify new treatments for AA. Novel therapeutic strategies, such as gene editing technologies (e.g. CRISPR-Cas9 manipulation of HF antigens), cell therapy and cell-derived products (e.g. HF stem cells and exosomes), and regenerative medicine approaches (e.g. regeneration of IP in AA-affected HFs), hold promise not just for treating the symptom of hair loss but also for addressing the underlying causes of AA. The integration of cutting-edge technologies into drug discovery pipelines could provide more effective, more durable AA treatment solutions.

### 5. Alopecia areata in vitro and ex vivo systems for preclinical treatment screening

The need for new and improved treatments for AA is clear, and there are a number of in vitro and ex vivo model systems specific to AA that can facilitate research and development:

### 5.1. In vitro disease models for alopecia areata

Leukocytes from patients with AA can provide a representative model for studying immunological aspects of the disease (Table 4). By isolating and culturing these cells, researchers can investigate the cells' behavior [23], interactions with other cells [86,87], responses to antigenic stimuli [24], and the in vivo effects of therapeutic agents [88]. Peripheral blood mononuclear cells (PBMCs) can also be isolated from AA patients and subjected to candidate drugs in vitro [89]. These PBMC populations primarily include lymphocytes (T cells, B cells, and NK cells) and monocytes. Rarely, immune cells are isolated from AA scalp biopsies for culture [90]. In any event, CD8<sup>+</sup> and CD4<sup>+</sup> T cells are of primary interest as the drivers of actual hair loss [15].

Other scientists have taken a different approach whereby HF keratinocytes [91], dermal papilla cells [92], adiposederived stem cells [93], or immune cells from non-AA affected volunteers [94] have been induced to express an inflammatory state and then candidate AA treatments were assessed for their ability to suppress the phenotype. Such cell cultures could provide a basic platform for initial screening of treatments that inhibit leukocyte activation, cell migration, cytokine secretion, or cytotoxic activity. It is a simple approach that offers advantages, but also disadvantages, in determining a candidate drug's potential to modulate inflammation in AA pathogenesis (Table 4).

### 5.2. Ex vivo hair follicle inflammatory organ culture model

The HF organ culture model [95] involves maintaining dissected human HFs in a controlled culture environment to study inflammatory responses and screen therapeutic agents. Although it is possible to microdissect HFs from scalp biopsies obtained from AA patients (unpublished), more typically, HFs are obtained from patients undergoing hair transplants or face lifts. These healthy follicles are then exposed to cytokines such as IFNy to induce a characteristic inflammatory phenotype, including the upregulation of MHC class I and II molecules and breakdown of HF IP [96]. The follicles can be evaluated in isolation, with past studies investigating the responses to calcitonin gene-related peptide (CGRP) [97], VIP [98] and IL-15 [99]. Recent studies have also co-cultured HFs with immune cells to evaluate their interaction (Table 4) [100,101].

### 5.3. Whole alopecia areata affected skin explant biopsies

Whole-skin explant biopsies from AA patients offer a model that includes all skin components, including epidermis, dermis, HFs, and local inflammatory infiltrate cells. This model retains the complex cellular interactions and extracellular matrix components, providing a more holistic view of the disease process and any treatment effects. Skin biopsies can be obtained from the edge of advancing AA lesions for direct culture (unpublished). More typically, however, healthy scalp biopsies are subjected to IFNy to induce inflammation [99,102]. The biopsies are cultured on a supportive matrix in an air-liquid interface culture system. Topical treatments can then be applied to the surface of the biopsy and local responses to the treatment are evaluated; typically using RNA sequencing, cytokine expression assays, and immunohistochemistry. Cultured explant analysis provides insights into the inflammatory pathways active in AA immediately in and around affected follicles (Table 4).

### 6. In vivo alopecia areata disease model systems for preclinical treatment screening

Rodent models are invaluable for studying AA due to their ability to recapitulate key aspects of the disease and facilitate



Table 4. Advantages and disadvantages of in vitro and ex vivo alonecia areata models

| Disease model                                                                                                                       | Advantages                                                                                                                                                                                                                                                                                                                                            | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peripheral blood mononuclear cells (PBMCs) from AA patients in culture                                                              | <ol> <li>Blood samples are relatively accessible with<br/>links to dermatology clinics</li> <li>AA patients are often enthusiastic to provide<br/>a blood donation for research</li> <li>A large number of drugs or parameters can be<br/>evaluated in parallel</li> </ol>                                                                            | <ol> <li>Only 1–2% of the cells derived from the PBMC sample will be truly pathogenic cells</li> <li>PBMC populations do not fully reflect the local HF inflammatory milieu</li> <li>Does not include Langerhans cells, dendritic cells, and tissue-resident memory T cells</li> <li>Maintaining cell activation beyond a few hours without resorting to nonspecific immune cell activators limits the time frame in which studies need to be completed</li> <li>Cytokine milieu, extracellular matrix components, and cell–cell interactions in skin are difficult to replicate in this model</li> </ol>                                                        |
| Inflammation induced healthy cells in culture (hair follicle keratinocytes; dermal papilla cells; adipose derived stem cells; etc.) | <ol> <li>Relatively easy to obtain from commercial cell suppliers; no access to AA patients needed</li> <li>Simple methodology using common cell culture materials and equipment</li> </ol>                                                                                                                                                           | <ol> <li>Induction, typically using IFNy, and then maintenance of proinflammatory state for the duration of culture can be challenging</li> <li>Open to question whether induced inflammatory state is an accurate reflection of AA condition</li> <li>Cannot model the complex dynamics of multiple cell types in hair follicle units</li> <li>Cannot model hair cycling state</li> </ol>                                                                                                                                                                                                                                                                       |
| Ex vivo hair follicle inflammatory organ culture model                                                                              | <ol> <li>Model more closely mimics the <i>in vivo</i> conditions of hair follicles within AA lesional skin</li> <li>The complex distribution and interactions of hair follicle cells and immune privilege factors can be assessed</li> <li>Can evaluate hair follicle response to wholecell populations or specific cell subsets</li> </ol>           | <ol> <li>Limited availability of human hair follicles for larger screening studies</li> <li>Currently, the model does not allow for physical contact between immune cells and hair follicles (might be remedied by culture in alginate gel or similar matrix)</li> <li>Hair follicles in organ culture do not undergo the natura hair cycle phases (anagen, catagen, telogen) limiting assessment of any drug hair regrowth effects</li> <li>Hair follicles are usually from a donor who is different from the AA patient who supplied PBMCs; there is a possible genetic mismatch and corresponding allogeneic immune cell challenge to contend with</li> </ol> |
| Whole AA affected skin explant biopsies in culture                                                                                  | <ol> <li>Ideal for evaluating the immunomodulatory efficacy of topical treatments and, to a lesser extent, systemic drugs</li> <li>Can apply drugs directly to the explants and monitor changes in immune cell migration, cytokine production, and tissue integrity</li> <li>Model fully represents all of the local skin components of AA</li> </ol> | <ol> <li>Very limited availability of lesional AA scalp biopsies</li> <li>Biopsies only last for around 7 days in culture limiting time for drug assessments</li> <li>Does not address other contributing factors beyond the skin, such as central immune tolerance, hormonal and environmental influences</li> <li>Model does not provide information on treatments that target the recruitment of pathogenic immune cells into skin or interference with antigen presentation in lymph nodes/spleen</li> </ol>                                                                                                                                                 |

the investigation of underlying mechanisms and therapeutic interventions. In older literature, the DEBR (Dundee Experimental Bald Rat) model was utilized both for understanding disease pathogenesis and for evaluating drug treatments [103]. Other animal models have also been suggested, including transgenic rodents [104], dogs, horses, and chickens [105]. These models no longer exist (DEBR), are poorly characterized (transgenics, chickens) or are not readily accessible (large animals with AA). However, two rodent models have progressed to the point where they can be used for practical screening and development of AA treatments:

### 6.1. C3H/HeJ mouse model of alopecia areata

The C3H/HeJ mouse strain is the most widely used model for studying AA due to its ability to spontaneously develop the disease, as well as the potential for inducing AA through grafting and cell injection techniques [106,107]. Up to 20% of C3H/HeJ mice can spontaneously develop AA, typically presenting with patchy hair loss that mirrors human AA [108]. Research shows that mouse AA involves the infiltration of CD8<sup>+</sup> T cells, CD4<sup>+</sup> cells and other immune cells around HFs, leading to follicular disruption and hair loss [17,109]. Overall, the mouse model is comparable to human AA (Table 5) [1,110-112]. Notably, there have been attempts to artificially induce AA in the C3H/HeJ strain using subcutaneous injections of IFNy alone [113], or in combination with polyinosinic: polycytidylic acid [114], to initiate immunity. The hair loss and skin inflammation patterns look different as compared to spontaneous AA (Table 5). None-the-less, the model has been used in a recent interesting study [115].

Although only some C3H/HeJ mice spontaneously develop AA, all C3H/HeJ mice can be induced to develop AA by skin grafting [116]. In this approach, skin grafts from one donor C3H/HeJ mouse with spontaneous AA are transplanted to ~20 healthy C3H/HeJ mice. This induces AA in the recipients with clinically visible hair loss typically beginning at around 10 weeks post grafting. Graft-induced AA allows for the study of disease transmission and the identification of key immune components involved in AA pathogenesis. It also serves as a robust model for testing potential therapeutic interventions (Table 5) [117]. Notably, this model was utilized in initial



Table 5. Selected advantages and disadvantages of murine alopecia areata models.

| Disease model                                                                 | Advantages                                                                                                                                                                                                                                                                                                                                               | Disadvantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spontaneous C3H/HeJ (also C3H/<br>HeN) AA mice                                | <ol> <li>Widely available in academia and from commercial suppliers</li> <li>Docile strain characteristics</li> <li>Only CD8<sup>+</sup> cells penetrate to intra-follicular locations as with human AA</li> <li>CD8<sup>+</sup> and CD4<sup>+</sup> cells shown to be primary drivers of hair loss as with human AA</li> </ol>                          | <ol> <li>Limited numbers spontaneously develop AA</li> <li>AA only develops in aged mice which increases maintenance costs</li> <li>CD4<sup>+</sup> and CD8<sup>+</sup> cell skin infiltration ratios not the same as seen in humans</li> <li>Variable/unpredictable time of AA onset makes it difficult to conduct time course studies</li> </ol>                                                                                                                                                 |
| Skin grafted C3H/HeJ AA mouse<br>model                                        | <ol> <li>(1) AA onset can be time controlled</li> <li>(2) Up to 20 mice with AA can be produced using one spontaneous AA donor</li> <li>(3) Well characterized in multiple publications</li> <li>(4) Previously used in several studies to evaluate drug treatments, including JAK inhibitors</li> </ol>                                                 | <ol> <li>AA affected mice not generally commercially available</li> <li>Requires surgical skills to produce AA affected mice</li> <li>Labor intensive mouse monitoring and nursing required post operation</li> <li>Long-term studies beyond ~12 months duration are not practical</li> </ol>                                                                                                                                                                                                      |
| Cultured lymph node cell injected<br>C3H/HeJ mouse model                      | from one spontaneous AA donor (3) Systemic immune responses beyond the skin can be evaluated                                                                                                                                                                                                                                                             | <ul> <li>(1) AA affected mice not commercially available</li> <li>(2) Requires good cell culture skills to produce AA affected mice [107]</li> <li>(3) Long-term studies beyond ~12 month duration are not practical</li> <li>(4) Newer model and so less well characterized compared to skin graft model</li> </ul>                                                                                                                                                                               |
| Induced C3H/HeJ mouse model<br>(using IFNy; Poly I:C)                         | <ol> <li>AA onset can be time controlled</li> <li>Potentially many mice can be produced for large-scale screening studies</li> <li>Model is potentially available at short notice and requires much less preparation compared to other AA mouse models</li> <li>Relatively cheap model to produce compared to skin graft/cell injected models</li> </ol> | <ol> <li>Induced skin inflammation is mild and diffuse in nature; does not clearly replicate the features of classic mouse AA</li> <li>Open to question whether the induced inflammatory hair loss is an accurate reflection of AA disease/autoimmune mechanisms</li> <li>Unclear whether significant systemic immune responses occur beyond the skin</li> <li>Limited characterization as new models/few publications</li> </ol>                                                                  |
| Humanized AA skin graft – AA<br>PBMC injection SCID mouse<br>model            | <ol> <li>Uses AA affected human scalp skin</li> <li>Preserves the local AA scalp immune and HF environment</li> <li>Allows the study of human-specific skin immune responses</li> <li>Allows testing of therapies directly targeting human immune components</li> </ol>                                                                                  | <ol> <li>Human donor AA skin in very limited supply</li> <li>Requires AA PBMCs from the same scalp skin donor (otherwise an allogeneic immune response will occur)</li> <li>Requires surgical skills to produce mice with AA grafts</li> <li>Does not capture immune responses to treatments that may occur beyond the skin</li> </ol>                                                                                                                                                             |
| Humanized normal skin graft –<br>activated PBMC injection SCID<br>mouse model | <ol> <li>Uses normal human scalp skin from face lifts or hair transplants</li> <li>Preserves the local scalp HF environment</li> <li>Allows the study of human-specific skin immune responses</li> <li>Allows testing of therapies directly targeting human immune components</li> </ol>                                                                 | <ol> <li>Requires use of scalp skin and PBMCs from the same donor (otherwise an allogeneic immune response may occur)</li> <li>Does not capture immune responses to treatments that may occur beyond the skin</li> <li>Open to question whether activated PBMCs injected into normal human scalp explants elicit an inflammatory state equivalent to AA</li> <li>Open to the question of whether injected activated healthy PBMCs specifically target HF antigen epitopes as seen in AA</li> </ol> |

studies to identify JAK inhibitors as new drugs suitable for AA treatment development [49].

Skin graft induced AA probably works through the transfer of pathogenic immune cells and exposed antigens present in the graft. Based on this observation, a cell injectioninduced AA model was developed [118]. This involves the isolation of skin-draining lymph node lymphocytes from a single AA-affected C3H/HeJ mouse, and cell culture using a cytokine cocktail and nonspecific immune cell activation, to produce enough cells to inject up to 100 syngeneic mice to induce AA [119]. As large numbers of mice can be produced with AA at a similar time point in disease development, this model offers the potential to screen drugs, or multiple drug parameters, in parallel. The C3H/ HeJ mouse model provides several advantages for AA study and treatment development; not least that systemic immune responses beyond the skin can be evaluated, and hair regrowth patterns can be quantified in response to treatments over a multi-week time course (Table 5).

### 6.2. Humanized alopecia areata skin graft SCID mouse model

The humanized AA skin graft SCID (severe combined immunodeficiency) mouse model represents a sophisticated approach to studying AA with a more human context [120]. There are two variations of this system. Originally, the model involved grafting the AA-affected human scalp skin onto SCID mice and injecting activated PBMCs from patients to maintain the AA phenotype [121]. However, in more recent studies, healthy non-AA scalp explants are grafted and later injected with healthy donor PBMCs enriched for NKG2D<sup>+</sup> and CD56<sup>+</sup> cells to induce an AA-like inflammatory hair loss [122]. This model preserves the local scalp environment, potentially providing a more accurate representation of human HF inflammation dynamics compared to rodent models. It allows for the study of human-specific immune responses and the testing of therapies directly targeting human immune components [99,123]. As some drugs are developed specifically against



human targets, they may not always be functional in other mammals. Consequently, this human skin graft model may be the only practical in vivo screening tool applicable in certain situations. However, this model and its variations suffer from a number of limitations, not least a lack of easy scalability (Table 5).

### 7. Current and potential alopecia areata disease pathogenesis targets for therapeutic intervention

Thus far, AA treatments have focussed on either suppressing the inflammatory cell infiltrate or modulating it using contact sensitizers and irritant chemicals. These treatments have broad effects acting on multiple immune cell types. Targeting the activities of pathogenic cells with new drugs is entirely logical. There are, however, other potential intervention points in the disease pathogenesis mechanism that could be targeted. As alternatives to concentrating on pathogenic cell suppression, therapeutic strategies could focus on other aspects of AA pathobiology, aiming to reestablish immune tolerance, suppress immune activation, and/or protect HFs.

### 7.1. Targeting pathogenic lymphocytes

Currently emerging JAK inhibitor treatments for AA modulate specific signaling pathways and cellular interactions related to the immune system response in AA [45]. Concerted efforts to investigate other biologics for AA seem to have largely fallen by the wayside with several clinical studies registered, but either incomplete or showing suboptimal results in initial evaluations (Table 3). Returning to some of these candidates and improved versions for a more systematic analysis of their application to AA might be appropriate.

### 7.2. Targeting immune tolerance mechanisms

One of the primary challenges in AA is the loss of immune tolerance against HF autoantigens, which enables the infiltration of autoreactive lymphocytes. To address this, therapies might aim to reestablish tolerance to HF autoantigens. Approaches could include promotion of tolerogenic regulatory T cells (Tregs) and dendritic cells to 'educate' autoreactive cells [124-126]. Promoting these tolerogenic cells in situ may be possible using agents such as low-dose IL-2 or aspirin, for example [127,128]. Additionally, mesenchymal cells or exosomes, known for their inherent IP properties, might be used to re-establish HF antigen tolerance [92,129,130].

### 7.3. Targeting immune privilege restoration or enhancement

Inducers of IP collapse, produced in response to HF distress signals, are a key factor in AA pathogenesis. Therapies that aim to block the receipt of these stimulatory signals and suppress the production of IP collapse inducers may be effective. Techniques include modifying or blocking signal-ligand interactions within HFs, particularly those involving NKG2D, MICA, and ULBP3 [131,132]. Neutralizing IP collapse inducers, such as

IFNy [133], with monoclonal antibodies, and/or applying substance P receptor antagonists [134], Kv1.3 channel inhibitors [135], and PDE4 inhibitors [136] could be additional strategies to prevent HF attack by immune cells. Alternatively, enhancing the expression of IP-conferring factors such as Indoleamine 2,3-dioxygenase (IDO) [137] may prevent AA. Gene therapy holds potential for increasing the expression of weak IP factors, or potentially introducing new protective components not normally seen in HFs. Direct application of factors such as aMSH and analogs [27,138,139], CGRP receptor agonists [97], and VIP analogs [98] could strengthen HF IP.

### 7.4. Targeting immune cell migration

Research has shown that the CTL infiltrates in AA lesions are comprised of skin resident cells and also circulating cells [34]. As such, another treatment strategy could be to impede the migration of APCs from the skin, as observed with contact sensitization in AA mouse models [140]. This might then prevent activation and recruitment of circulating autoreactive cells from draining lymph nodes. Post CTL activation, interfering with T-cell chemoattractant signaling, such as preventing HF expression or T-cell reception of chemokines, also shows promise and may be adaptable for treating AA [141,142].

### 7.5. Targeting antigen recognition

Suppressing MHC class I and II expression in HFs, blocking the binding of MHC plus antigen epitopes to TCRs on autoreactive T cells, modulating co-stimulatory signaling, and/or blocking antigen recognition responses by infiltrating T cells and APCs could be effective strategies against AA. Therapies might include using MHC class I down-regulating drugs like tacrolimus [27], suppressing MHC class II with agents such as IL-10 [143] or Red/IK [144], and neutralizing co-stimulatory factors using CTLA4 and its ligands CD80 and CD86 [18,145]. Hypothetically, modifying the glycosylation of autoantigens can reduce their immunogenic properties and control their uptake, proteolytic processing, and presentation by MHC [146]. Additionally, interfering with TCR recognition of autoantigen-MHC class I complexes using antibody-TCR mimics could prevent the activation of autoreactive T cells [147].

### 7.6. Targeting supporting ancillary cells

Appropriate supporting signals from various cell types, including CD4<sup>+</sup> cells, mast cells, and macrophages, likely play a significant role in sustaining the AA autoimmune response. Suppressing these cells, blocking their activation, and inhibiting their signaling, could be therapeutic objectives for new drug development. Blocking the migration of supporting cells to the skin using monoclonal antibodies against skin homing receptors [148-150], inhibiting proinflammatory cytokine signaling [151,152], and potentially using anti-histamines or desensitization therapy [153] to block mast cell support could represent effective strategies. Dupilumab is one example of a drug that interferes with the role of supporting cells in AA. Recent studies indicate that Th2-skewing may play a key pathogenic role in AA in



addition to the IFNy-induced Th1 immune pathway. As a monoclonal antibody blocking interleukin 4 and interleukin 13 cell signaling, dupilumab provides hair regrowth improvement in patients with atopic dermatitis-associated AA [154].

### 7.7. Targeting direct hair growth promotion

Finally, while there have been some attempts to cultivate the use of direct hair growth promoters for treating AA, the results have been disappointing. Minoxidil is used for AA, but typically only in an adjunctive fashion alongside an immunosuppressive agent. In a recent reassessment of multiple studies, 57% of patients receiving adjunctive minoxidil treatment experienced hair regrowth. Successful response increased significantly to 85% when patients received combination oral minoxidil and oral JAK inhibitor treatment [155]. The intensity of inflammation in AA is quite significant such that direct hair growth promoter drugs are rendered largely ineffective on their own. Consequently, an effective drug development strategy for AA probably lies in focusing on some aspect of the immune system and/or its interaction with (mal)functioning anagen stage HFs. Nonetheless, direct hair growth promotion may still be very useful as an adjunctive AA treatment (see below).

### 8. Challenges in alopecia areata drug discovery

Those intent on discovery and development of new effective drugs for AA are confronted with numerous obstacles that reflect the complex nature of the disease. Considering each of these potential issues may at least partly help in mitigating the challenges to address:

### 8.1. Heterogeneity of alopecia areata

AA presents in various forms, from patchy to alopecia universalis, including diffuse and ophiasis AA, each potentially requiring different treatment approaches. This heterogeneity complicates drug discovery as different types of AA may respond variably to the same drug treatment. The mode of application, whether topical, intralesional, or systemic, also influences results with the same drug. Moreover, the duration of AA likely affects treatment responses. Additionally, distinctions among patients, due to the presence of atopy for example, may define poor-responders [156]. Clinical trials often exclude AA patients with less than 50% hair loss, or with greater than 95% scalp hair loss, and those with more unusual AA forms, as an attempt to increase consistency in clinical appraisal. Many clinical trials also deliberately exclude patients with AA who have not experienced any hair regrowth within the past 7 or 10 years, and as such, these patients' responses to treatment are essentially unknown [157]. However, at some point in drug development these clinical variations will need to be addressed.

### 8.2. Complexity of disease mechanisms

The pathophysiology of AA is complex, with localized disease phenotypes often masking the underlying systemic immune activity. This complexity is further compounded by the variability in genetic and environmental inputs across individuals. Some patients exhibit strong genetic predispositions, while others may develop AA primarily due to environmental factors such as stress. It is generally accepted that over time, the immune input in AA can change, with variations in epitope targeting and memory T cell populations. In addition, the stage of disease, characterized by inflammation intensity and the dystrophic state of HFs, could influence therapeutic efficacy. For example, long-term AA patients may require interventions that not only address immune dysregulation but also stimulate HFs out of their chronic telogen state.

### 8.3. Issues with current clinical models and methods

The lack of effective patient stratification mechanisms makes it difficult to predict treatment responses and tailor treatment plans based on specific disease presentations. Furthermore, the absence of standardized measures for assessing disease severity and treatment response hinders the comparability of clinical trial results. While the Severity of Alopecia Tool (SALT) score is commonly used to quantify the extent of hair loss in most modern clinical trials [158], different studies may define treatment 'success' based on different end point parameters such as hair regrowth achieving 70% net scalp density or 40% improvement in hair growth from baseline, etc (Table 3). The lack of sensitive clinical outcome measures to assess disease severity and treatment efficacy complicates the determination of what constitutes a truly successful treatment response. Further, comparison of results between clinical trials for different drugs is problematic due to the absence of standardized endpoints.

### 8.4. Lack of biomarker identification and validation

Identifying and validating biomarkers for disease activity and treatment response in AA remains a significant gap in our knowledge. Understanding how a treatment interacts with the underlying disease mechanisms at a molecular level could lead to additional therapeutic strategy optimization in the near term. In the longer term, better biomarkers could enable the development of more novel interventions. Clinical studies often incorporate evaluation of PBMC samples for proinflammatory cytokine levels and/or leukocyte cell analysis of their activation state. However, these biomarkers only reflect what is happening around HFs in a very limited way. Scalp biopsies would give a much better insight, but patients are usually reluctant to permit skin sampling. More effective biomarkers are needed for assessing treatment safety and monitoring disease progression/stability/regression. Their current inadequacies limit the precision of clinical assessments and the development of therapies optimized for particular subsets of AA patients. By stratifying patients based on their unique AA disease pathogenesis mechanisms, clinicians could potentially tailor treatments more effectively to enhance overall therapeutic outcomes. Furthermore, better biomarkers could help in identifying patients who may be at risk of adverse side



effects with particular treatments, thereby improving safety profiles and patient management.

### 8.5. In vitro and in vivo disease model fidelity

The fidelity of current animal and in vitro systems in modeling human AA is a challenge to preclinical research and development. While the models provide valuable insights, they do not fully replicate the immune responses, HF cycling, and the genetic/environmental factors involved in human AA. Translating findings from these models to human trials can be difficult due to inherent differences in disease pathology and immune system functioning between species, and the artificial environment in vitro. In the longer term, this translational gap will necessitate the development of more accurate models that can better predict human responses to potential treatments.

### 9. Conclusions

Significant progress has been made in AA research, though much deeper exploration is needed to fully understand the signaling pathways active in AA pathogenesis. Current AA treatments have been developed and used since the 1950-1970s [103], but have limited efficacy and carry the risk of potential adverse reactions. This has led to several companies developing new AA treatments, most often focusing on systemic immunosuppression modalities. Beyond the current excitement around JAK inhibitors, the results from clinical trials thus far have been mixed. Some patients achieve significant hair regrowth, but by no means do all attain good scalp coverage.

Overall, the drug discovery process for AA is hindered by the heterogeneity of the condition, our relatively poor understanding of the disease mechanisms involved, limitations with current research models, the lack of validated biomarkers, and limitations around clinical trial designs for AA. Addressing these challenges will require a multifaceted approach; integrating a better understanding of personalized medicine accommodating both variations in clinical presentation and AA disease status, standardized assessment protocols for hair growth and appropriate trial end points to define treatment efficacy, development of robust biomarkers that provide a very sensitive and accurate readout of the AA disease state, and improved disease model systems to accelerate the discovery of effective therapies for AA.

### 10. Expert opinion

Developing novel anti-AA therapy schemes is urgent given current treatment modalities' shortcomings. However, novel AA therapy research is still mostly in the early exploratory stages due to a limited understanding of disease pathogenesis mechanisms. Why AA can be self-limiting, allowing some patients to recover untreated, while others transition to chronic recurrent hair loss, remains to be elucidated. Some patients have tried new treatments without yielding expected significant results. In certain cases, new therapy efficacy does not compare favorably with traditional treatments. All the forgoing leads to some viewpoints on the future of drug development for AA. Inevitably, these opinions are not necessarily held by the majority of experts:

### 10.1. There is a growing market for AA treatments

While the lifetime risk for AA has been calculated at about 2.1%, suggesting 150 million people worldwide are affected during their lives, the value of the AA treatment market is much larger than indicated solely by the numbers affected. AA patients are more motivated to obtain treatment given the extent of hair loss can be significant, first onset is most common in late teens to early twenties, and the AA can affect women and children as much as men. Thanks to patient advocacy groups, AA is now regarded as a medical condition and private health insurance and public health systems may cover treatment costs. Going forward, the market size is likely to increase significantly with the advent of new drug treatments superior to those currently available, increased awareness from patients as to treatment options, and improved treatment accessibility from dermatology clinics, particularly in rapidly developing countries.

### 10.2. AA treatment cost reduction is needed

A study investigating medical costs for AA patients was conducted in the U.S.A. between 2014 and 2019. Patients with non-AT/AU AA had high medical (\$6303) and pharmacy (\$1284) costs per year. AT/AU patients had larger pharmacy costs (\$1918) [159]. Treatment costs today are likely much higher with the recent advent of JAK inhibitor approval in several countries. Indeed, some 'alarm bells' are ringing for public health care systems as to the considerable costs that may be involved. With the approval of JAK inhibitors baricitinib and ritlecitinib in the UK, AA treatment costs to the National Health Service (NHS) were nominally calculated at £4 billion annually [157] for 400,000 patients at a point prevalence of 0.58% [56]. This is clearly unrealistic, but even if the penetrance rate into the UK AA market was just 10%, the gross annual cost would still be £400 million. Overall, there is a considerable potential market size for new and improved AA drugs that remains largely unmet, but for widespread adoption of any treatment, the costs involved will have to be addressed.

### 10.3. Improvements and alternatives to JAK inhibitors are needed

While systemic JAK inhibitors have shown significant efficacy in recent clinical trials, questions remain as to their safety. The long-term use of systemic JAK inhibitors for AA will probably need to be based on the assessments of specific patient risk factors (age, cardiovascular history, smoking status, cancer risk, etc.) to develop risk minimization treatment plans. For highrisk groups, dosage reduction or intermittent dosing strategies might balance efficacy with safety. Developing topical or skinlocalized JAK inhibitor application would significantly increase the desirability of this treatment category, as well as reduce costs, and alleviate fears of long-term use side effect risks.



The concentrated investment of time, effort, and resources into JAK inhibitor drugs has inadvertently overshadowed the exploration and development of better therapeutic strategies. As a result, potentially valuable treatments targeting other molecular pathways, efficacy improvements, and more holistic therapeutic approaches remain largely unexplored. Attention to JAK inhibitors could limit the breadth of available treatments and slow the advancement of more comprehensive therapeutic options for AA.

### 10.4. Alternative therapeutic pathways need exploration

Other molecular pathways that might be targeted with new treatment development are detailed above. Promoting the IP defense of HFs, reactivation of immune system immunorequlatory functions, and interference with HF antigen presentation seem particularly promising avenues for exploration. Such treatments also offer the possibility of not only enabling hair growth in the short term but also achieving long-lasting changes to the immune system and/or HFs that increase resistance to future disease relapse. Refocusing attention on other aspects of AA pathogenesis might also reduce sideeffect risks, particularly for drugs that need to be taken longterm.

### 10.5. Optimization of current and prospective treatments is needed

Current treatments have not been systematically optimized for AA. More comprehensive evaluations of the best dosage for efficacy and side effect minimization are needed. More effective drug vehicles or modes of application could significantly improve treatment efficiency. Most notably, the need for localized AA treatments seems to be largely ignored at the current time. Potentially, reformulation of JAK inhibitors, or other immunosuppressive drugs, could overcome the issues with deep skin penetrance needed for AA topical treatment.

The drug half lives of many immunosuppressive drugs, including JAK inhibitors, last just a few hours. Improved formulations to enable slow release, or a depot effect, could enhance their therapeutic efficacy. These approaches could provide a more consistent drug release minimizing the peaks and troughs associated with daily oral dosing. Maintaining stable plasma concentrations over extended periods could reduce the frequency of medication. In turn, this should improve patient adherence to treatment regimens, which will be particularly relevant for long-term disease management.

### 10.6. Adjunctive treatments may synergistically increase efficacy

Adjunctive therapeutics to synergistically improve AA treatments need more attention. Small-scale studies suggest that anti-histamines [153], desensitization therapy [160], and/or dupilumab [154] may be effective for patients with atopic AA when combined with immunosuppressive drugs. Other adjunctive therapies could be investigated, such as antidepressants for patients with chronic stress induced AA, or

microbiome modifiers for those identified with significant alterations to their gut or scalp microbiota. Minoxidil is used as an adjunctive treatment to directly promote hair growth alongside immunomodulatory drugs [155]. The studies are limited and small scale; proper randomized control trials are needed to really determine the full synergistic effects and optimal dosage.

### 10.7. Final thoughts

The arena of AA enquiry is small compared to research into other skin autoimmune diseases, but the field is expanding. The number of medical publications on AA has increased almost exponentially in the last few years [103,161]. In no small part, this is due to the discovery of JAK inhibitor drugs for treating AA. Yet, there is a much larger potential for new therapeutics beyond JAK inhibitors that remains untapped. In the next 5 years, we expect to see further increases in research publications and a greater effort to understand the nature of AA, including its molecular disease pathogenesis, clinical prognostics, and patient stratification, as well as new treatments. We look forward to the new discoveries that will be made and the development of new therapeutics we can employ in our clinics for AA patients.

### **Acknowledgments**

The authors thank YJ Yang for their assistance in the collection of data and its management.

### **Funding**

The authors are funded by Alopecia UK.

### **Declaration of interest**

KJ McElwee is a shareholder, consultant, and investigator for Replicel Life Sciences Inc. KJ McElwee is also the Director of McElwee Consulting Ltd. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

### **Reviewer disclosure**

Peer reviewers on this manuscript have no relevant financial or other relationships to disclose.

### References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (..) to readers.

- 1. Pratt CH, King LE Jr., Messenger AG, et al. Alopecia areata. Nat Rev Dis Primers. 2017 Mar 16;3(1):17011. doi: 10.1038/nrdp.2017.11
- · Overview of alopecia areata encompassing its etiology, clinical manifestations, and relevant methods for diagnosis and treatment.
- 2. Cranwell WC, Lai VW, Photiou L, et al. Treatment of alopecia areata: an Australian expert consensus statement. Australas J Dermatol. 2019 May;60(2):163-170. doi: 10.1111/ajd.12941

- 3. Alkhalifah A, Alsantali A, Wang E, et al. Alopecia areata update: part I. Clinical picture, histopathology, and pathogenesis. J Am Acad Dermatol. 2010 Feb;62(2):177-88, quiz 189-90. doi: 10.1016/j.jaad. 2009.10.032
- 4. Villasante Fricke AC, Miteva M. Epidemiology and burden of alopecia areata: a systematic review. Clin Cosmet Investig Dermatol. 2015;8:397-403. doi: 10.2147/CCID.S53985
- 5. Hunt N, McHale S. The psychological impact of alopecia. BMJ. 2005 Oct 22;331(7522):951-953. doi: 10.1136/bmj.331.7522.951
- 6. Rodgers AR. Why finding a treatment for Alopecia Areata is important: a multifaceted perspective. J Investig Dermatol Symp Proc. 2018 Jan;19(1):S51-S53. doi: 10.1016/j.jisp.2017.10.008
- 7. Toussi A, Barton VR, Le ST, et al. Psychosocial and psychiatric comorbidities and health-related quality of life in alopecia areata: a systematic review. J Am Acad Dermatol. 2021 Jul;85(1):162–175. doi: 10.1016/j.jaad.2020.06.047
- 8. Finner AM. Alopecia areata: clinical presentation, diagnosis, and unusual cases. Dermatol Ther. 2011 May;24(3):348-354. doi: 10. 1111/j.1529-8019.2011.01413.x
- 9. Olayinka JJT, Richmond JM. Immunopathogenesis of alopecia areata. Curr Res Immunol. 2021;2:7-11. doi: 10.1016/j.crimmu. 2021 02 001
- Review on the immunopathogenic mechanisms of alopecia
- 10. Zhang X, Ye Y, Zhu Z, et al. Sequential cyclic changes of hair roots revealed by dermoscopy demonstrate a progressive mechanism of diffuse alopecia areata over time. Exp Dermatol. 2020 Mar;29 (3):223-230. doi: 10.1111/exd.13799
- 11. Whiting DA. Histopathologic features of alopecia areata: a new look. Archiv Dermatol. 2003 Dec;139(12):1555-1559. doi: 10.1001/ archderm.139.12.1555
  - Detailed review on the different histopathological presentations found in alopecia areata.
- 12. Wang E, McElwee KJ. Etiopathogenesis of alopecia areata: why do our patients get it? Dermatol Ther. 2011 May;24(3):337-347. doi: 10.1111/j.1529-8019.2011.01416.x
- 13. Guo H, Cheng Y, Shapiro J, et al. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev Clin Immunol. 2015;11(12):1335-1351. doi: 10.1586/1744666X.2015. 1085306
- Good review on the respective contributions of different lymphocyte subsets to alopecia areata.
- 14. Strazzulla LC, Wang EHC, Avila L, et al. Alopecia areata: disease characteristics, clinical evaluation, and new perspectives on pathogenesis. J Am Acad Dermatol. 2018 Jan;78(1):1-12. doi: 10. 1016/j.jaad.2017.04.1141
- Excellent global review of alopecia areata pathogenesis.
- 15. Bertolini M, McElwee K, Gilhar A, et al. Hair follicle immune privilege and its collapse in alopecia areata. Exp Dermatol. 2020 Aug;29 (8):703-725. doi: 10.1111/exd.14155
- . Detailed review of hair follicle immune privilege and the potential mechanisms of immune privilege collapse in the development of alopecia areata.
- 16. McElwee KJ, Spiers EM, Oliver RF. In vivo depletion of CD8+ T cells restores hair growth in the DEBR model for alopecia areata. Br J Dermatol. 1996 Aug;135(2):211–217. doi: 10.1111/j.1365-2133. 1996.tb01149.x
- 17. McElwee KJ, Freyschmidt-Paul P, Hoffmann R, et al. Transfer of CD8(+) cells induces localized hair loss whereas CD4(+)/CD25(-) cells promote systemic alopecia areata and CD4(+)/CD25(+) cells blockade disease onset in the C3H/HeJ mouse model. J Invest Dermatol. 2005 May;124(5):947-957. doi: 10.1111/j.0022-202X. 2005.23692.x
- 18. Carroll JM, McElwee KJ, Ek L, et al. Gene array profiling and immunomodulation studies define a cell-mediated immune response underlying the pathogenesis of alopecia areata in a mouse model and humans. J Invest Dermatol. 2002 Aug;119(2):392-402. doi: 10. 1046/j.1523-1747.2002.01811.x
- 19. Bain KA, Nichols B, Moffat F, et al. Stratification of alopecia areata reveals involvement of CD4 T cell populations and altered faecal

- microbiota. Clin Exp Immunol. 2022 Dec 15;210(2):175-186. doi: 10. 1093/cei/uxac088
- 20. Younes AK, Hammad R, Othman M, et al. CD4, CD8 and natural killer cells are depressed in patients with alopecia areata: their association with disease activity. BMC Immunol. 2022 Mar 17;23 (1):13. doi: 10.1186/s12865-022-00486-4
- 21. Gilhar A, Landau M, Assy B, et al. Mediation of alopecia areata by cooperation between CD4+ and CD8+ T lymphocytes: transfer to human scalp explants on Prkdc(scid) mice. Arch Dermatol. 2002 Jul;138(7):916-922. doi: 10.1001/archderm.138.7.916
- 22. McElwee KJ, Spiers EM, Oliver RF. Partial restoration of hair growth in the DEBR model for Alopecia areata after in vivo depletion of CD4+ T cells. Br J Dermatol. 1999 Mar;140(3):432-437. doi: 10.1046/ j.1365-2133.1999.02705.x
- 23. Zoller M, McElwee KJ, Vitacolonna M, et al. Apoptosis resistance in peripheral blood lymphocytes of alopecia areata patients. J Autoimmun. 2004 Nov;23(3):241-256. doi: 10.1016/j.jaut.2004.08.002
- 24. Wang EHC, Yu M, Breitkopf T, et al. Identification of Autoantigen Epitopes in Alopecia Areata. J Invest Dermatol. 2016 Aug;136 (8):1617-1626. doi: 10.1016/j.jid.2016.04.004
- 25. Paus R, Slominski A, Czarnetzki BM. Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med. 1993 Nov;66(6):541-554. doi: 10.1016/0923-1811(93)91068-6
- 26. Paus R, Nickoloff BJ, Ito T. A 'hairy' privilege. Trends Immunol. 2005 Jan;26(1):32-40. doi: 10.1016/j.it.2004.09.014
- 27. Ito T, Ito N, Bettermann A, et al. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model [research support, non-U.S. Gov't]. Am J Pathol. 2004 Feb;164(2):623-634. doi: 10.1016/S0002-9440(10)63151-3
- .. Study of collapse and restoration of MHC Class-I-dependent immune privilege in hair follicles.
- 28. Gilhar A, Laufer-Britva R, Keren A, et al. Frontiers in alopecia areata pathobiology research. J Allergy Clin Immunol. 2019 Dec;144 (6):1478-1489. doi: 10.1016/j.jaci.2019.08.035
- 29. Rajabi F, Drake LA, Senna MM, et al. Alopecia areata: a review of disease pathogenesis. Br J Dermatol. 2018 Nov;179(5):1033-1048. doi: 10.1111/bjd.16808
- 30. Subramanya RD, Coda AB, Sinha AA. Transcriptional profiling in alopecia areata defines immune and cell cycle control related genes within disease-specific signatures. Genomics. 2010 Sep;96 (3):146–153. doi: 10.1016/j.ygeno.2010.05.002
- 31. Kang H, Wu WY, Yu M, et al. Increased expression of TLR7 and TLR9 in alopecia areata. Exp Dermatol. 2020 Mar;29(3):254-258. doi: 10. 1111/exd.14043
- 32. McDonagh AJ, Snowden JA, Stierle C, et al. HLA and ICAM-1 expression in alopecia areata in vivo and in vitro: the role of cytokines. Br J Dermatol. 1993 Sep;129(3):250-256. doi: 10.1111/j. 1365-2133.1993.tb11842.x
- 33. Ghersetich I, Campanile G, Lotti T. Alopecia areata: immunohistochemistry and ultrastructure of infiltrate and identification of adhesion molecule receptors. Int J Dermatol. 1996 Jan;35(1):28-33. doi: 10.1111/j.1365-4362.1996.tb01611.x
- 34. Lee EY, Dai Z, Jaiswal A, et al. Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing. Proc Natl Acad Sci U S A. 2023 Jul 18;120(29):e2305764120. doi: 10. 1073/pnas.2305764120
- 35. Ito T, Ito N, Saatoff M, et al. Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack. J Invest Dermatol. 2008 May;128(5):1196–1206. doi: 10.1038/sj.jid.5701183
- 36. Bertolini M. Zilio F. Rossi A. et al. Abnormal interactions between perifollicular mast cells and CD8+ T-cells may contribute to the pathogenesis of alopecia areata. PLOS ONE. 2014;9(5):e94260. doi: 10.1371/journal.pone.0094260
- 37. Ito T, Kageyama R, Nakazawa S, et al. Understanding the significance of cytokines and chemokines in the pathogenesis of alopecia areata. Exp Dermatol. 2020 Aug;29(8):726-732. doi: 10.1111/exd.14129
- 38. Suarez-Farinas M, Ungar B, Noda S, et al. Alopecia areata profiling shows TH1, TH2, and IL-23 cytokine activation without parallel



- TH17/TH22 skewing. J Allergy Clin Immunol. 2015 Nov;136 (5):1277-1287. doi: 10.1016/j.jaci.2015.06.032
- Review on the cytokine activation characteristics of the Th1, Th2, and IL-23 pathways in alopecia areata.
- 39. Ito T, Tokura Y. The role of cytokines and chemokines in the T-cellmediated autoimmune process in alopecia areata. Exp Dermatol. 2014 Nov;23(11):787-791. doi: 10.1111/exd.12489
- 40. Li J, Sinclair R. Clinical observations in alopecia areata: implications and hypotheses. Australas J Dermatol. 2016 Feb;57(1):e29-31. doi: 10.1111/ajd.12227
- · Explanation of potential mechanism of hair loss progression and migration in alopecia areata.
- 41. Strazzulla LC, Wang EHC, Avila L, et al. Alopecia areata: an appraisal of new treatment approaches and overview of current therapies. J Am Acad Dermatol. 2018 Jan;78(1):15–24. doi: 10.1016/j.jaad.2017.04.1142
- 42. Alkhalifah A, Alsantali A, Wang E, et al. Alopecia areata update: part II. J Am Acad Dermatol. 2010 Feb;62(2):191-202, guiz 203-4. doi: 10.1016/j.jaad.2009.10.031
- 43. Malhotra K, Madke B. An updated review on current treatment of Alopecia Areata and newer therapeutic options. Int J Trichology. 2023 Jan;15(1):3-12. doi: 10.4103/ijt.ijt\_28\_21
- Review of current alopecia areata treatments.
- 44. Pelechas E. Voulgari PV. Drosos AA. Tnfalpha inhibitor biosimilars associated with alopecia areata. Case-based review. Rheumatol Int. 2022 Jun;42(6):1113-1117. doi: 10.1007/s00296-022-05129-w
- 45. Lensing M, Jabbari A. An overview of JAK/STAT pathways and JAK inhibition in alopecia areata. Front Immunol. 2022;13:955035. doi: 10.3389/fimmu.2022.955035
- · Useful overview on JAK pathways of relevance to alopecia areata pathogenesis.
- 46. Mao MQ, Ding YX, Jing J, et al. The evaluation of JAK inhibitors on effect and safety in alopecia areata: a systematic review and meta-analysis of 2018 patients. Front Immunol. 2023;14:1195858. doi: 10.3389/fimmu.2023.1195858
- 47. Ye Y, Wang Y, Zhu J, et al. Diagnosis and differential diagnosis of tertiary androgenetic alopecia with severe alopecia areata based on high-resolution MRI. Skin Res Technol. 2023 Jul;29(7):e13393. doi: 10.1111/srt.13393
- 48. Wiseman MC, Shapiro J, MacDonald N, et al. Predictive model for immunotherapy of alopecia areata with diphencyprone. Arch Dermatol. 2001 Aug;137(8):1063-1068. doi: 10-1001/pubs.Arch Dermatol.-ISSN-0003-987x-137-8-dob00092
- 49. Xing L, Dai Z, Jabbari A, et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat Med. 2014 Sep;20(9):1043-1049. doi: 10.1038/nm.3645
- Demonstrates JAK inhibitor drug potential using mouse model and the first clinical study of JAK inhibitors in the treatment of alopecia areata.
- 50. Schwartz DM, Bonelli M, Gadina M, et al. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016 Jan;12(1):25-36. doi: 10.1038/nrrheum.2015.167
- 51. Spinelli FR, Meylan F, O'Shea JJ, et al. JAK inhibitors: Ten years after. Eur J Immunol. 2021 Jul;51(7):1615-1627. doi: 10.1002/eji.202048922
- 52. Harel S, Higgins CA, Cerise JE, et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci Adv. 2015 Oct;1(9): e1500973. doi: 10.1126/sciadv.1500973
- 53. Wlassits R, Muller M, Fenzl KH, et al. JAK-Inhibitors a story of success and adverse events. Open Access Rheumatol. 2024;16:43-53. doi: 10.2147/OARRR.S436637
- 54. Safavi KH, Muller SA, Suman VJ, et al. Incidence of alopecia areata in Olmsted County, Minnesota, 1975 through 1989. Mayo Clin Proc. 1995 Jul;70(7):628-633. doi: 10.4065/70.7.628
- 55. Mirzoyev SA, Schrum AG, Davis MDP, et al. Lifetime incidence risk of alopecia areata estimated at 2.1% by rochester epidemiology project, 1990-2009. J Invest Dermatol. 2014 Apr;134(4):1141-1142. doi: 10.1038/jid.2013.464
- 56. Harries M, Macbeth AE, Holmes S, et al. The epidemiology of alopecia areata: a population-based cohort study in UK primary care. Br J Dermatol. 2022 Feb;186(2):257-265. doi: 10.1111/bjd.20628

- · Comprehensive analysis of alopecia areata epidemiology including differences between ethnic groups.
- 57. Sy N, Mastacouris N, Strunk A, et al. Overall and racial and ethnic subgroup prevalences of Alopecia Areata, Alopecia Totalis, and Alopecia Universalis. JAMA Dermatol. 2023 Apr 1;159(4):419-423. doi: 10.1001/jamadermatol.2023.0016
- 58. Mostaghimi A, Gao W, Ray M, et al. Trends in prevalence and incidence of Alopecia Areata, Alopecia Totalis, and Alopecia Universalis among adults and children in a US employer-sponsored insured population. JAMA Dermatol. 2023 Apr 1;159(4):411-418. doi: 10.1001/jamaderma tol.2023.0002
- 59. Lee HH, Gwillim E, Patel KR, et al. Epidemiology of alopecia areata, ophiasis, totalis, and universalis: a systematic review and meta-analysis. J Am Acad Dermatol. 2020 Mar;82(3):675-682. doi: 10.1016/j.jaad.2019.08.032
- 60. Soh BW, Kim SM, Kim YC, et al. Increasing prevalence of alopecia areata in South Korea. J Dermatol. 2019 Sep;46(9):e331-e332. doi: 10.1111/1346-8138.14863
- 61. Wang H, Pan L, Wu Y. Epidemiological trends in Alopecia Areata at the global, regional, and national levels. Front Immunol. 2022;13:874677. doi: 10.3389/fimmu.2022.874677
- · Review of global epidemiology of alopecia areata.
- 62. Shi Y, Wan S, Song X. Role of neurogenic inflammation in the pathogenesis of alopecia areata. J Dermatol. 2024 May;51 (5):621–631. doi: 10.1111/1346-8138.17227
- 63. Minokawa Y, Sawada Y, Nakamura M. Lifestyle factors involved in the pathogenesis of Alopecia Areata. Int J Mol Sci. 2022 Jan 18;23 (3):1038. doi: 10.3390/ijms23031038
- 64. Yan T, Wang T, Tang M, et al. Comparative efficacy and safety of JAK inhibitors in the treatment of moderate-to-severe alopecia areata: a systematic review and network meta-analysis. Front Pharmacol. 2024;15:1372810. doi: 10.3389/fphar.2024.1372810
- .. Review of the efficacy and safety of JAK inhibitors for the treatment of alopecia areata.
- 65. Haughton RD, Herbert SM, Ji-Xu A, et al. Janus kinase inhibitors for alopecia areata: a narrative review. Indian J Dermatol Venereol Leprol. 2023 Nov;89(6):799-806. doi: 10.25259/IJDVL\_ 1093 2022
- 66. Gordon SC, Abudu M, Zancanaro P, et al. Rebound effect associated with JAK inhibitor use in the treatment of alopecia areata. J Eur Acad Dermatol Venereol. 2019 Apr;33(4):e156-e157. doi: 10.1111/jdv.15383
- 67. Peeva E, Guttman-Yassky E, Banerjee A, et al. Maintenance, withdrawal, and re-treatment with ritlecitinib and brepocitinib in patients with alopecia areata in a single-blind extension of a phase 2a randomized clinical trial. J Am Acad Dermatol. 2022 Aug;87(2):390-393. doi: 10.1016/j.jaad.2021.12.008
- 68. King B, Ko J, Kwon O, et al. Baricitinib withdrawal and retreatment in patients with severe Alopecia Areata: the BRAVE-AA1 randomized clinical trial. JAMA Dermatol. 2024 Aug 14. doi: 10.1001/ iamadermatol.2024.2734
- 69. Freitas E, Guttman-Yassky E, Torres T. Baricitinib for the treatment of Alopecia Areata. Drugs. 2023 Jun;83(9):761-770. doi: 10.1007/ s40265-023-01873-w
- 70. Song H, Fang F, Tomasson G, et al. Association of stress-related disorders with subsequent autoimmune disease. JAMA. 2018 Jun 19;319(23):2388-2400. doi: 10.1001/jama.2018.7028
- 71. Bellocchi C, Carandina A, Montinaro B, et al. The interplay between autonomic nervous system and inflammation across systemic autoimmune diseases. Int J Mol Sci. 2022 Feb 23;23(5):2449. doi: 10. 3390/ijms23052449
- 72. Mostaghimi A, Napatalung L, Sikirica V, et al. Patient perspectives of the social, emotional and functional impact of Alopecia Areata: a systematic literature review. Dermatol Ther (Heidelb). 2021 Jun;11 (3):867-883. doi: 10.1007/s13555-021-00512-0
  - Review on the psychological impacts of alopecia areata.
- 73. Zhang X, Yu M, Yu W, et al. Development of alopecia areata is associated with higher central and peripheral hypothalamic-pituitaryadrenal tone in the skin graft induced C3H/HeJ mouse model. J Invest Dermatol. 2009 Jun;129(6):1527-1538. doi: 10.1038/jid.2008.371



- 74. Picardi A, Pasquini P. Toward a biopsychosocial approach to skin diseases. Adv Psychosom Med. 2007;28:109-126. doi: 10.1159/ 000106800
- 75. Monselise A, Bar-On R, Chan L, et al. Examining the relationship between alopecia areata, androgenetic alopecia, and emotional intelligence. J Cutan Med Surg. 2013 Jan;17(1):46-51. doi: 10. 2310/7750.2012.12003
- 76. Vano-Galvan S, Blume-Peytavi U, Farrant P, et al. Physician- and patient-reported severity and quality of life impact of Alopecia Areata: results from a real-world survey in five European countries. Dermatol Ther (Heidelb). 2023 Dec;13(12):3121-3135. doi: 10.1007/s13555-023-01057-0
- 77. Holmes S. Harries M. Macbeth AE, et al. Alopecia areata and risk of atopic and autoimmune conditions: population-based cohort study. Clin Exp Dermatol. 2023 Mar 22;48(4):325-331. doi: 10. 1093/ced/llac104
- Study on the direct biochemical connection between chronic areata inflammation and systemic disease alopecia phenotypes.
- 78. Dai YX, Tai YH, Chang YT, et al. Bidirectional association between areata and thyroid diseases: a nationwide population-based cohort study. Arch Dermatol Res. 2021 Jul;313 (5):339-346. doi: 10.1007/s00403-020-02109-7
- 79. Kincaid CM, Sharma AN, Mesinkovska NA. Alopecia areata is associated with risk of inflammatory arthritis. J Am Acad Dermatol. 2023 Aug;89(2):422-423. doi: 10.1016/j.jaad.2023.04.039
- 80. Jung JM, Yang HJ, Lee WJ, et al. Association between psoriasis and alopecia areata: a systematic review and meta-analysis. J Dermatol. 2022 Sep;49(9):912-915. doi: 10.1111/1346-8138.16420
- 81. Shin JW, Kang T, Lee JS, et al. Time-dependent risk of acute myocardial infarction in patients with Alopecia Areata in Korea. JAMA Dermatol. 2020 Jul 1;156(7):763-771. doi: 10.1001/jamader matol.2020.1133
- 82. Lee H, Kim YC, Choi JW, et al. Alopecia areata is not a risk factor for heart diseases: a 10-year retrospective cohort study. PLoS One. 2021;16(5):e0250216. doi: 10.1371/journal.pone.0250216
- 83. Peterson D, Wambier C, Dai F, et al. Electrocardiogram findings in patients with Alopecia Areata. Dermatol Ther (Heidelb). 2021 Dec;11(6):2217-2223. doi: 10.1007/s13555-021-00614-9
- 84. Wang EH, Santos L, Li XY, et al. Alopecia Areata is associated with increased expression of heart disease Biomarker cardiac troponin I. Acta Derm Venereol. 2018 Aug 29;98(8):776-782. doi: 10.2340/ 00015555-2964
- 85. Cho WC. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics. 2007 May;5(2):77-85. doi: 10.1016/ S1672-0229(07)60018-7
- 86. Gu SQ, Ros AM, von Stedingk LV, et al. T cell subpopulations and their functions in vitro. A study in patients with alopecia areata and alopecia universalis. Int Arch Allergy Appl Immunol. 1981;66 (2):208-217. doi: 10.1159/000232820
- 87. Kim JE, Lee YJ, Lee KJ, et al. Ex vivo treatment with allogenic mesenchymal stem cells of a healthy donor on peripheral blood mononuclear cells of patients with severe Alopecia Areata: targeting Dysregulated T cells and the acquisition of immunotolerance. Int J Mol Sci. 2022 Oct 30;23(21):13228. doi: 10.3390/ijms232113228
- 88. Yoshino T, Asada H, Ando Y, et al. Impaired responses of peripheral blood mononuclear cells to T-cell stimulants in alopecia areata patients with a poor response to topical immunotherapy. Br J Dermatol. 2001 Sep;145(3):415-421. doi: 10.1046/j.1365-2133.2001.04398.x
- 89. Shohat M, Mimouni D, Ben-Amitai D, et al. In vitro cytokine profile in childhood alopecia areata and the immunomodulatory effects of AS-101. Clin Exp Dermatol. 2005 Jul;30(4):432-434. doi: 10.1111/j. 1365-2230.2005.01817.x
- 90. Thein C, Strange P, Hansen ER, et al. Lesional alopecia areata T lymphocytes downregulate epithelial cell proliferation. Arch Dermatol 1997 Jun;289(7):384–388. doi: Res. s004030050209
- 91. Shin JM, Jung KE, Yim SH, et al. Putative therapeutic mechanisms of simvastatin in the treatment of alopecia areata. J Am Acad Dermatol. 2021 Mar;84(3):782-784. doi: 10.1016/j.jaad.2020.03.102

- 92. Kim JE, Oh JH, Woo YJ, et al. Effects of mesenchymal stem cell therapy on alopecia areata in cellular and hair follicle organ culture models. Exp Dermatol. 2020 Mar;29(3):265-272. doi: 10.1111/exd. 13812
- 93. Choi N, Hwang J, Kim DY, et al. Involvement of DKK1 secreted from adipose-derived stem cells in alopecia areata. Cell Prolif. 2024 Mar;57(3):e13562. doi: 10.1111/cpr.13562
- 94. Ann S, Ibo J, Megha M, et al. Treatment of in vitro generated Langerhans cells with JAK-STAT inhibitor reduces their inflammatory potential. Clin Exp Med. 2023 Oct;23(6):2571-2582. doi: 10. 1007/s10238-022-00899-w
- 95. Bertolini M, Piccini I, McElwee KJ. In vitro and ex vivo hair follicle models to explore therapeutic options for hair regeneration. In: Jimenez F, and Higgins C, editors. Hair follicle regeneration. Cham: Springer International Publishing; 2022. p. 155-203. doi: 10.1007/ 978-3-030-98331-4\_8
- · Comprehensive review on different hair follicle models and their application in research.
- 96. Fehrholz M, Bertolini M. Collapse and restoration of hair follicle immune privilege ex vivo: a Model for Alopecia Areata. Methods Mol Biol. 2020;2154:133-141. doi: 10.1007/978-1-0716-0648-3\_11
- 97. Kinori M, Bertolini M, Funk W, et al. Calcitonin gene-related peptide (CGRP) may award relative protection from interferon-y-induced collapse of human hair follicle immune privilege. Exp Dermatol. 2012;21(3):223-226. doi: 10.1111/j.1600-0625.2011.01432.x
- 98. Bertolini M, Pretzlaff M, Sulk M, et al. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol. 2016;175(3):531-541. doi: 10.1111/bjd.
- 99. Suzuki T, Cheret J, Scala FD, et al. Interleukin-15 is a hair follicle immune privilege guardian. J Autoimmun. 2024 May;145:103217. doi: 10.1016/j.jaut.2024.103217
- 100. Uchida Y, Gherardini J, Pappelbaum K, et al. Resident human dermal gammadeltaT-cells operate as stress-sentinels: lessons from the hair follicle. J Autoimmun. 2021 Nov;124:102711. doi: 10. 1016/j.jaut.2021.102711
- 101. Laufer Britva R, Keren A, Bertolini M, et al. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. Elife. 2023 Mar 17;12. doi: 10.7554/eLife.80768
- 102. Meyer KC, Klatte JE, Dinh HV, et al. Evidence that the bulge region is a site of relative immune privilege in human hair follicles. Br J Dermatol. 2008 Nov;159(5):1077-1085. doi: 10.1111/j.1365-2133. 2008.08818.x
- 103. Broadley D, McElwee KJ. A "hair-raising" history of alopecia areata. Exp Dermatol. 2020 Mar;29(3):208-222. doi: 10.1111/exd.14073
- 104. Alli R, Nguyen P, Boyd K, et al. A mouse model of clonal CD8+ T lymphocyte-mediated alopecia areata progressing to alopecia universalis. J Immunol. 2012 Jan 1;188(1):477-486. doi: 10.4049/ jimmunol.1100657
- 105. McElwee KJ, Boggess D, Olivry T, et al. Comparison of alopecia areata in human and nonhuman mammalian Pathobiology. 1998;66(2):90-107. doi: 10.1159/000028002
- 106. Sundberg JP, McElwee K, Brehm MA, et al. Animal models for Alopecia Areata: what and where? J Investig Dermatol Symp Proc. 2015 Nov;17(2):23-26. doi: 10.1038/jidsymp.2015.35
- 107. Sundberg JP, Wang EHC, McElwee KJ. Current protocols: alopecia areata mouse models for drug efficacy and mechanism studies. Curr Protoc. 2024 Aug;4(8):e1113. doi: 10.1002/cpz1.1113
  - .. Step by step protocols for the development of skin graft and cultured leukocyte cell injected mouse models of alopecia
- 108. Sundberg JP, Cordy WR, King LE Jr. Alopecia areata in aging C3H/ HeJ mice. J Invest Dermatol. 1994 Jun;102(6):847-856. doi: 10.1111/ 1523-1747.ep12382416
- 109. McElwee KJ, Hoffmann R, Freyschmidt-Paul P, et al. Resistance to alopecia areata in C3H/HeJ mice is associated with increased expression of regulatory cytokines and a failure to recruit CD4+ and CD8+ cells. J Invest Dermatol. 2002 Dec;119(6):1426-1433. doi: 10.1046/j.1523-1747.2002.19620.x

- 110. McElwee KJ, Freyschmidt-Paul P, Sundberg JP, et al. The pathogenesis of alopecia areata in rodent models. J Invest Dermatol Symp Proc. 2003 Jun;8(1):6-11. doi: 10.1046/j.1523-1747.2003.12164.x
- 111. McElwee KJ, Yu M, Park SW, et al. What can we learn from animal models of Alopecia areata? Dermatology. 2005;211(1):47–53. doi: 10.1159/000085580
- 112. Suzuki T, Tokura Y, Ito T. Similarities of dermoscopic findings in alopecia areata between human and C3H/HeJ mouse. J Dermatol Sci. 2016 Aug;83(2):154-157. doi: 10.1016/j.jdermsci.2016.04.007
- 113. Gilhar A, Kam Y, Assy B, et al. Alopecia areata induced in C3H/HeJ mice by interferon-gamma: evidence for loss of immune privilege. J Invest Dermatol. 2005 Jan;124(1):288–289. doi: 10.1111/j.0022-202X.2004.23580.x
- 114. Shin JM, Choi DK, Sohn KC, et al. Induction of alopecia areata in C3H/HeJ mice using polyinosinic-polycytidylic acid (poly[i: c]) and interferon-gamma. Sci Rep. 2018 Aug 21;8(1):12518. doi: 10.1038/ s41598-018-30997-3
- 115. Hao L. Nam KH. Lee GJ. et al. SIRT1 downregulation provokes immune-inflammatory responses in hair follicle outer root sheath cells and may contribute to development of alopecia areata. J Dermatol Sci. 2023 Jul;111(1):2-9. doi: 10.1016/j.jdermsci.2023.05.005
- 116. McElwee KJ, Boggess D, King LE Jr., et al. Experimental induction of alopecia areata-like hair loss in C3H/HeJ mice using full-thickness skin grafts. J Invest Dermatol. 1998 Nov;111(5):797-803. doi: 10. 1046/j.1523-1747.1998.00380.x
- 117. Sun J, Silva KA, McElwee KJ, et al. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol. 2008 Oct;17(10):793-805. doi: 10.1111/j.1600-0625.2008.00773.x
- 118. Wang EHC, Khosravi-Maharlooei M, Jalili RB, et al. Transfer of Alopecia Areata to C3H/HeJ Mice using cultured lymph node-derived cells. J Invest Dermatol. 2015 Oct:135 (10):2530-2532. doi: 10.1038/jid.2015.176
- 119. Wang EHC, McElwee KJ. Nonsurgical induction of Alopecia Areata in C3H/HeJ mice via adoptive transfer of cultured lymphoid cells. Methods Mol Biol. 2020;2154:121-131. doi: 10.1007/978-1-0716-0648-3 10
- 120. Gilhar A, Schrum AG, Etzioni A, et al. Alopecia areata: Animal models illuminate autoimmune pathogenesis and novel immunotherapeutic strategies. Autoimmun Rev. 2016 Jul;15(7):726-735. doi: 10.1016/j.autrev.2016.03.008
- 121. Gilhar A, Ullmann Y, Berkutzki T, et al. Autoimmune hair loss (alopecia areata) transferred by T lymphocytes to human scalp explants on SCID mice. J Clin Invest. 1998 Jan 1;101(1):62-67. doi: 10.1172/JCI551
- 122. Gilhar A, Keren A, Shemer A, et al. Autoimmune disease induction in a healthy human organ: a humanized mouse model of alopecia areata. J Invest Dermatol. 2013 Mar;133(3):844–847. doi: 10.1038/jid.2012.365
- 123. Ghraieb A, Keren A, Ginzburg A, et al. iNKT cells ameliorate human autoimmunity: lessons from alopecia areata. J Autoimmun. 2018 Jul;91:61-72. doi: 10.1016/j.jaut.2018.04.001
- 124. Singh V, Mueller U, Freyschmidt-Paul P, et al. Delayed type hypersensitivity-induced myeloid-derived suppressor cells regulate autoreactive T cells. Eur J Immunol. 2011 Oct;41(10):2871-2882. doi: 10.1002/eji.201141696
- 125. Zoller M, Zhao K, Kutlu N, et al. Immunoregulatory effects of myeloid-derived suppressor cell exosomes in mouse Model of autoimmune Alopecia Areata. Front Immunol. 2018;9:1279. doi: 10.3389/fimmu.2018.01279
- 126. Esmaeilzadeh A, Tahmasebi S, Athari SS. Chimeric antigen receptor -T cell therapy: applications and challenges in treatment of allergy and asthma. Biomed Pharmacother = Biomedecine Pharmacotherapie. 2020 Mar;123:109685. doi: 10.1016/j.biopha.2019.109685
- 127. Castela E, Le Duff F, Butori C, et al. Effects of low-dose recombinant interleukin 2 to promote T-regulatory cells in alopecia areata. JAMA Dermatol. 2014;150(7):748-751. doi: 10.1001/jamadermatol.2014.504
- 128. Mondal S, Jana M, Dasarathi S, et al. Aspirin ameliorates experimental autoimmune encephalomyelitis through interleukin-11mediated protection of regulatory T cells. Sci Signal. 2018 Nov 27;11(558). doi: 10.1126/scisignal.aar8278

- 129. Li Y, Yan B, Wang H, et al. Hair regrowth in alopecia areata patients following stem cell educator therapy. BMC Med. 2015 Apr 20;13 (1):87. doi: 10.1186/s12916-015-0331-6
- 130. Byun JW, Kim HJ, Na K, et al. Bone marrow-derived mesenchymal stem cells prevent alopecia areata development through the inhibition of NKG2D expression: a pilot study. Exp Dermatol. 2017 Jun;26(6):532-535. doi: 10.1111/exd.13255
- 131. Vadstrup K, Bendtsen F. Anti-NKG2D mAb: a new treatment for Crohn's disease? Int J Mol Sci. 2017 Sep 16;18(9):1997. doi: 10.3390/ iims18091997
- 132. Andersson AK, Sumariwalla PF, McCann FE, et al. Blockade of NKG2D ameliorates disease in mice with collagen-induced arthritis: a potential pathogenic role in chronic inflammatory arthritis. Arthritis Rheumatism. 2011 Sep;63(9):2617-2629. doi: 10.1002/art.30460
- 133. Hoffmann R, Ivanov I, Nacheva G, et al. Human interferon-gamma antagonists: an emerging therapeutic tool to treat Alopecia areata poster session: 132. Exp Dermatol. 2010;19(6):597.
- 134. Lindstrom E, von Mentzer B, Pahlman I, et al. Neurokinin 1 receptor antagonists: correlation between in vitro receptor interaction and in vivo efficacy. J Pharmacol Exp Ther. 2007 Sep;322(3):1286-1293. doi: 10.1124/jpet.107.124958
- 135. Gilhar A, Keren A, Shemer A, et al. Blocking potassium channels (Kv1.3): a new treatment option for alopecia areata? J Invest Dermatol. 2013 Aug;133(8):2088-2091. doi: 10.1038/jid.2013.141
- 136. Keren A, Shemer A, Ullmann Y, et al. The PDE4 inhibitor, apremilast, suppresses experimentally induced alopecia areata in human skin in vivo. J Dermatol Sci. 2015 Jan;77(1):74-76. doi: 10.1016/j. jdermsci.2014.11.009
- 137. Jalili RB, Kilani RT, Li Y, et al. Fibroblast cell-based therapy prevents induction of alopecia areata in an experimental model. Cell Transplant. 2018 Jun;27(6):994-1004. doi: 10.1177/0963689718773311
- 138. Brzoska T, Luger TA, Maaser C, et al. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev. 2008 Aug;29(5):581-602. doi: 10.1210/er.2007-0027
- 139. Petukhova L, Patel AV, Rigo RK, et al. Integrative analysis of rare copy number variants and gene expression data in alopecia areata implicates an aetiological role for autophagy. Exp Dermatol. 2020 Mar;29(3):243-253. doi: 10.1111/exd.13986
- 140. Gupta P, Freyschmidt-Paul P, Vitacolonna M, et al. A chronic contact eczema impedes migration of antigen-presenting cells in alopecia areata. J Invest Dermatol. 2006 Jul;126(7):1559-1573. doi: 10. 1038/sj.jid.5700328
- 141. Dai Z, Xing L, Cerise J, et al. CXCR3 blockade inhibits T cell migration into the skin and prevents development of Alopecia Areata. J Immunol. 2016 Aug 15;197(4):1089-1099. doi: 10.4049/jimmunol.1501798
- 142. McPhee CG, Duncan FJ, Silva KA, et al. Increased expression of Cxcr3 and its ligands, Cxcl9 and Cxcl10, during the development of alopecia areata in the mouse. J Invest Dermatol. 2012 Jun;132 (6):1736-1738. doi: 10.1038/jid.2012.17
- 143. Thibodeau J, Bourgeois-Daigneault MC, Huppe G, et al. Interleukin-10-induced MARCH1 mediates intracellular sequestration of MHC class II in monocytes. Eur J Immunol. 2008 May;38(5):1225-1230. doi: 10.1002/eji.200737902
- 144. Choi S, Park H, Minelko M, et al. Recombinant Adeno-associated virus expressing truncated IK Cytokine diminishes the symptoms of inflammatory arthritis. J Microbiol Biotechnol. 2017 Oct 28;27 (10):1892-1895. doi: 10.4014/jmb.1705.05018
- 145. Lingel H, Brunner-Weinzierl MC. CTLA-4 (CD152): a versatile recepfor immune-based therapy. Semin Immunol. 2019 Apr;42:101298. doi: 10.1016/j.smim.2019.101298
- 146. Johnson JL, Jones MB, Ryan SO, et al. The regulatory power of glycans and their binding partners in immunity. Trends Immunol. 2013 Jun;34(6):290-298. doi: 10.1016/j.it.2013.01.006
- 147. Hoydahl LS, Frick R, Sandlie I, et al. Targeting the MHC ligandome by use of TCR-Like antibodies. Antibodies (Basel, Switz). 2019 May 9;8(2):32. doi: 10.3390/antib8020032
- 148. Zoller M, McElwee KJ, Engel P, et al. Transient CD44 variant isoform expression and reduction in CD4(+)/CD25(+) regulatory T cells in

- C3H/He I mice with alopecia areata. I Invest Dermatol. 2002 Jun:118 (6):983-992. doi: 10.1046/j.1523-1747.2002.01745.x
- 149. Yano S, Nakamura K, Okochi H, et al. Analysis of the expression of cutaneous lymphocyte-associated antigen on the peripheral blood and cutaneous lymphocytes of alopecia areata patients. Acta Derm Venereol. 2002;82(2):82-85. doi: 10.1080/00015550252948077
- 150. Zoller M. Gupta P. Marhaba R. et al. Anti-CD44-mediated blockade of leukocyte migration in skin-associated immune diseases. J Leukoc Biol. 2007 Jul;82(1):57-71. doi: 10.1189/jlb.0107063
- 151. Guttman-Yassky E, Ungar B, Noda S, et al. Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism. J Allergy Clin Immunol. 2016 Jan;137(1):301-304. doi: 10.1016/j.jaci.2015.11.001
- 152. Aleisa A, Lim Y, Gordon S, et al. Response to ustekinumab in three pediatric patients with alopecia areata. Pediatr Dermatol. 2019 Jan;36(1):e44-e45. doi: 10.1111/pde.13699
- 153. Zhang X, McElwee KJ. Allergy promotes alopecia areata in a subset of patients. Exp Dermatol. 2020 Mar;29(3):239-242. doi: 10.1111/
- 154. David E, Shokrian N, Del Duca E, et al. Dupilumab induces hair regrowth in pediatric alopecia areata: a real-world, single-center observational study. Arch Dermatol Res. 2024 Jul 23;316(7):487. doi: 10.1007/s00403-024-03225-4
- 155. Raval RS, Nohria A, Desai D, et al. The use of minoxidil in the treatment of alopecia areata: a systematic review. J Am Acad Dermatol. 2024 May 23;91(3):508-509. doi: 10.1016/j.jaad.2024.05.037
  - · Review on minoxidil as an adjunctive treatment.
- 156. Gong Y, Zhao Y, Zhang X, et al. Serum level of IL-4 predicts response to topical immunotherapy with diphenylcyclopropenone in alopecia areata. Exp Dermatol. 2020 Mar;29(3):231-238. doi: 10. 1111/exd.13758
- 157. Sinclair R. Alopecia areata: progress, but who pays? Br J Dermatol. 2022 Feb;186(2):206-207. doi: 10.1111/bjd.20712
- 158. Olsen EA, Roberts J, Sperling L, et al. Objective outcome measures: collecting meaningful data on alopecia areata. J Am Acad Dermatol. 2018 Sep;79(3):470-478 e3. doi: 10.1016/j.jaad.2017.10.048
  - · Succinct summary of assessment methods to define clinical status of alopecia areata in patients.
- 159. Ray M, Swallow E, Gandhi K, et al. Healthcare utilization and costs among US adolescents with Alopecia Areata. J Health Econ Outcomes Res. 2022;9(2):11-18. doi: 10.36469/jheor.2022.36229
- 160. Zeng Z, Li S, Ye Y, et al. Allergen desensitization reduces the severity of relapsed alopecia areata in dust-mite allergic patients. Exp Dermatol. 2023 Jul;32(7):1108–1119. doi: 10.1111/exd.14819
- 161. Luo WR, Shen G, Yang LH, et al. A bibliometrics of the treatment of Alopecia Areata in the past twenty years. Dermatology. 2024;240 (1):42-58. doi: 10.1159/000535043
- 162. Hsieh BJ, Shen D, Chan TC, et al. Higher cumulative dose of topical corticosteroids is associated with osteoporosis and major osteoporotic fracture: a nationwide case-control study. J Eur Acad Dermatol Venereol. 2024 Jul;38(7):1347-1356. doi: 10.1111/jdv.19697
- 163. Ramot Y, Marzani B, Pinto D, et al. IL-17 inhibition: is it the long-awaited savior for alopecia areata? Arch Dermatol Res. 2018 Jul;310(5):383-390. doi: 10.1007/s00403-018-1823-y
- 164. Guttman-Yassky E, Nia JK, Hashim PW, et al. Efficacy and safety of secukinumab treatment in adults with extensive alopecia areata. Arch Dermatol Res. 2018 Oct;310(8):607-614. doi: 10.1007/s00403-018-1853-5
- 165. Pagnanelli G, Cavani A, Canzona F, et al. Mild therapeutic response of alopecia areata during treatment of psoriasis with secukinumab. Eur J Dermatol. 2020 Oct 1;30(5):602-603. doi: 10.1684/ejd.2020.3866
- 166. Halling AS, Loft N, Silverberg JI, et al. Real-world evidence of dupilumab efficacy and risk of adverse events: a systematic review and meta-analysis. J Am Acad Dermatol. 2021 Jan;84(1):139-147. doi: 10.1016/j.jaad.2020.08.051
- 167. Guttman-Yassky E, Renert-Yuval Y, Bares J, et al. Phase 2a randomized clinical trial of dupilumab (anti-IL-4Ralpha) for alopecia areata patients. Allergy. 2022 Mar;77(3):897-906. doi: 10.1111/all.15071
  - Study on efficacy and safety of dupilumab suggesting alopecia areata patients with atopy should be regarded as a distinct subset with potentially different responses to treatments.

- 168. Gong Y, Luo L, Li L, et al. Diphenylcyclopropenone plays an effective therapeutic role by up-regulating the TSLP/OX40L/IL-13 pathway in severe alopecia areata. Exp Dermatol. 2021 Feb;30 (2):278-283. doi: 10.1111/exd.14254
- 169. Tavoletti G, Chiei-Gallo A, Barei F, et al. Tralokinumab as a therapeutic option for patients with concurrent atopic dermatitis and alopecia areata. Int J Dermatol. 2024 Mar;63(3):374-375. doi: 10.1111/ijd.17010
- 170. Ortolan LS, Kim SR, Crotts S, et al. IL-12/IL-23 neutralization is ineffective for alopecia areata in mice and humans. J Allergy Clin Immunol. 2019 Dec;144(6):1731-1734 e1. doi: 10.1016/j.jaci.2019.08.014
- 171. Tauber M, Beneton N, Reygagne P, et al. Alopecia areata developing during ustekinumab therapy: report of two cases. Eur J Dermatol. 2013 Nov;23(6):912-913. doi: 10.1684/ejd.2013.2221
- 172. Mackay-Wiggan J, Sallee BN, Wang EHC, et al. An open-label study evaluating the efficacy of abatacept in alopecia areata. J Am Acad Dermatol. 2021 Mar;84(3):841-844. doi: 10.1016/j.jaad.2020.09.091
- 173. Perez-Jeldres T, Alvarez-Lobos M, Rivera-Nieves J. Targeting sphingosine-1-phosphate signaling in immune-mediated diseases: beyond multiple sclerosis. Drugs. 2021 Jun;81(9):985-1002. doi: 10. 1007/s40265-021-01528-8
- 174. Ramirez-Marin HA, Tosti A. Emerging drugs for the treatment of alopecia areata, Expert Opin Emerg Drugs, 2022 Dec;27(4):379–387. doi: 10.1080/14728214.2022.2149735
- 175. Barron L, Dooms H, Hoyer KK, et al. Cutting edge: mechanisms of IL-2dependent maintenance of functional regulatory T cells. J Immunol. 2010 Dec 1;185(11):6426-6430. doi: 10.4049/jimmunol.0903940
- 176. Yuan Y, Kolios AGA, Liu Y, et al. Therapeutic potential of interleukin-2 in autoimmune diseases. Trends Mol Med. 2022 Jul;28(7):596-612. doi: 10.1016/j.molmed.2022.04.010
- 177. Le Duff F, Bouaziz JD, Fontas E, et al. Low-dose IL-2 for treating moderate to severe Alopecia Areata: a 52-week multicenter prospective placebo-controlled study assessing its impact on T regulatory cell and NK cell populations. J Invest Dermatol. 2021 Apr;141(4):933-936.e6. doi: 10.1016/j.jid.2020.08.015
- 178. Ali E, Owais R, Sheikh A, et al. Olumniant (baricitinib) oral tablets: an insight into fda-approved systemic treatment for Alopecia Areata. Ann Med Surg (Lond). 2022 Aug;80:104157. doi: 10.1016/j. amsu.2022.104157
- 179. Kwon O, Senna MM, Sinclair R, et al. Efficacy and safety of Baricitinib in patients with severe Alopecia Areata over 52 weeks of continuous therapy in two phase III trials (BRAVE-AA1 and BRAVE-AA2). Am J Clin Dermatol. 2023 May;24(3):443-451. doi: 10.1007/s40257-023-00764-w
- 180. King B, Guttman-Yassky E, Peeva E, et al. A phase 2a randomized, placebo-controlled study to evaluate the efficacy and safety of the oral janus kinase inhibitors ritlecitinib and brepocitinib in alopecia areata: 24-week results. J Am Acad Dermatol. 2021 Aug;85 (2):379-387. doi: 10.1016/j.jaad.2021.03.050
- 181. King B, Senna MM, Mesinkovska NA, et al. Efficacy and safety of deuruxolitinib, an oral selective janus kinase inhibitor, in adults with alopecia areata: results from the phase 3 randomized, controlled trial (THRIVE-AA1). J Am Acad Dermatol. 2024 Jul 23. doi: 10. 1016/j.jaad.2024.06.097
- 182. Zhou C, Yang X, Yang B, et al. A randomized, double-blind, placebo-controlled phase II study to evaluate the efficacy and safety of ivarmacitinib (SHR0302) in adult patients with moderate-to-severe alopecia areata. J Am Acad Dermatol. 2023 Nov;89(5):911-919. doi: 10.1016/j.jaad.2023.02.063
- 183. Xu H, Jesson MI, Seneviratne UI, et al. PF-06651600, a dual JAK3/ TEC family kinase inhibitor. ACS Chem Biol. 2019 Jun 21;14 (6):1235-1242. doi: 10.1021/acschembio.9b00188
- 184. Hordinsky M, Hebert AA, Gooderham M, et al. Efficacy and safety of ritlecitinib in adolescents with alopecia areata: results from the ALLEGRO phase 2b/3 randomized, double-blind, placebo-controlled trial. Pediatr Dermatol. 2023 Nov;40(6):1003-1009. doi: 10.1111/pde. 15378
- 185. Mackay-Wiggan J, Jabbari A, Nguyen N, et al. Oral ruxolitinib induces hair regrowth in patients with moderate-to-severe alopecia areata. JCI Insight. 2016 Sep 22;1(15):e89790. doi: 10.1172/jci.insight.89790



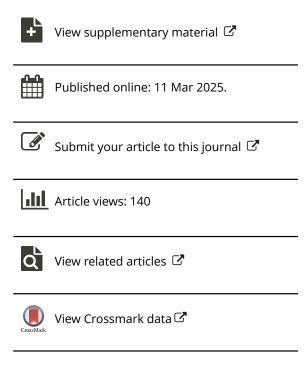
- 186. Cranwell W, Meah N, Wall D, et al. Real-world effectiveness and safety of tofacitinib for alopecia areata: a retrospective cohort study of 202 patients. Australas J Dermatol. 2024 Jun 3;65 (6):505-513. doi: 10.1111/ajd.14325
- 187. Liu LY, Craiglow BG, Dai F, et al. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J Am Acad Dermatol. 2017 Jan;76(1):22-28. doi: 10.1016/j.jaad.2016.09.007
- 188. Chiricozzi A, Balato A, Fabbrocini G, et al. Beneficial effects of upadacitinib on alopecia areata associated with atopic dermatitis: a multicenter retrospective study. J Am Acad Dermatol. 2023 Dec;89(6):1251-1253. doi: 10.1016/j.jaad.2023.05.001
- 189. Hashimoto K, Yamada Y, Sekiguchi K, et al. Induction of alopecia areata in C3H/HeJ mice using cryopreserved lymphocytes. J Dermatol Sci. 2021 Jun;102(3):177-183. doi: 10.1016/j.jdermsci.2021.04.009



# **Immunological Investigations**



A Journal of Molecular and Cellular Immunology


ISSN: 0882-0139 (Print) 1532-4311 (Online) Journal homepage: www.tandfonline.com/journals/iimm20

# Immunomodulatory Role and Therapeutic Potential of HLA-DR<sup>+</sup> Regulatory T Cells in Systemic Lupus Erythematosus

Jing Zhang, Bei Liao, Xiaobing Wang & Weijun Liu

**To cite this article:** Jing Zhang, Bei Liao, Xiaobing Wang & Weijun Liu (11 Mar 2025): Immunomodulatory Role and Therapeutic Potential of HLA-DR<sup>+</sup> Regulatory T Cells in Systemic Lupus Erythematosus, Immunological Investigations, DOI: <u>10.1080/08820139.2025.2475816</u>

To link to this article: https://doi.org/10.1080/08820139.2025.2475816







# Immunomodulatory Role and Therapeutic Potential of HLA-DR<sup>+</sup> Regulatory T Cells in Systemic Lupus Erythematosus

Jing Zhang, Bei Liao, Xiaobing Wang, and Weijun Liu

Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center for Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, JXHC Key Laboratory of Skin Infection and Immunity, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, Jiangxi, China

#### **ABSTRACT**

**Background:** Systemic lupus erythematosus (SLE) is a complex autoimmune disease that affects multiple organ systems. A key element in maintaining immune tolerance and preventing autoimmunity is the role of regulatory T cells (Treg cells). Among these, HLA-DR<sup>+</sup> Treg cells represent a distinct subset, and their altered expression and functionality in SLE are closely associated with the progression of the disease. This review explores the biological characteristics of HLA-DR<sup>+</sup> Treg cells, their mechanisms of action in SLE, as well as their potential and the challenges they pose as therapeutic targets.

**Methods and results:** This review offers a comprehensive analysis of the mechanisms by which HLA-DR<sup>+</sup> Treg cells regulate immune responses. It highlights their direct interactions with autoreactive T cells and antigen-presenting cells, which contribute to the suppression of autoimmunity. Additionally, the review explores the critical role of these cells in maintaining immune tolerance and their promising potential in the context of antigen-specific immunotherapy.

**Discussion:** The potential of HLA-DR<sup>+</sup> Treg cells in the treatment of systemic lupus erythematosus (SLE) is considerable, particularly due to their capacity to generate antigen-specific Tregs. The development of Treg-based therapies, including the expansion of both polyclonal and antigen-specific Tregs, is an area of active investigation. Nonetheless, several challenges persist, such as the need to optimize protocols for Treg generation and expansion, ensure the stability of the Treg phenotype, and address potential safety concerns associated with cellular therapies. Continued research is essential to fully harness the potential of HLA-DR<sup>+</sup> Treg cells in the treatment of SLE and other autoimmune diseases.

#### **KEYWORDS**

HLA-DR<sup>+</sup> regulatory T cells; immune tolerance; systemic lupus erythematosus

#### Introduction

Systemic lupus erythematosus (SLE) is a complex, chronic autoimmune disease in which the body's immune system erroneously targets its own tissues, resulting in widespread inflammation and damage across various organ systems. The clinical manifestations of SLE differ among individuals and may involve multiple organ systems, including malar rash,

arthritis, and nephritis. The disease typically follows a course characterized by periods of remission and relapse.

The incidence of SLE exhibits significant geographical variation. It is notably higher in North and South America compared to Asia and Europe, where the incidence is relatively lower. The global incidence of SLE is estimated at 5.14 cases per 100,000 population, with a range from 1.4 to 15.13 cases. Additionally, SLE is more prevalent in women than in men, particularly among those of reproductive age, specifically between 15 and 44 years (Barber et al., 2021).

The etiology of SLE is multifaceted and not attributable to a singular cause. Research indicates that the onset of SLE is significantly influenced by a combination of environmental factors, genetic predispositions, and immune system abnormalities. The interplay among these elements results in immune system dysregulation, subsequently provoking an autoimmune response (Crow, 2023). Tregs play a crucial role in the pathogenesis of autoimmune disorders, particularly in SLE, where Treg dysfunction is closely linked to the progression of the disease (Honing et al., 2024). Recent studies have highlighted the existence of two distinct subsets of Treg based on the expression of human leukocyte antigen-DR (HLA-DR): HLA-DR+ and HLA-DR- Tregs. These subsets exhibit distinct biological properties and plasticity, which may have significant implications for the pathogenesis and treatment of SLE (Dikiy & Rudensky, 2023). The aberrant expression and function of HLA-DR<sup>+</sup> Treg cells, a distinct subpopulation in systemic lupus erythematosus (SLE), are closely associated with disease progression (Raeber et al., 2024). Investigating their functional characteristics not only enhances our understanding of the underlying mechanisms of the disease but also offers new avenues for future therapeutic strategies.

## Biological properties of HLA-DR<sup>+</sup> Treg cells

Tregs that express HLA-DR represent a distinct subset of CD4<sup>+</sup> T cells with unique functional attributes. Constituting approximately one-third of adult peripheral blood CD4<sup>+</sup> effector Tregs (Schaier et al., 2013). Studies have shown that HLA-DR<sup>+</sup> Tregs are more immunosuppressive compared to HLA-DR<sup>-</sup> Tregs (Gootjes et al., 2024). This property allows HLA-DR<sup>+</sup> Tregs to play a key role in maintaining immune tolerance and preventing the progression of autoimmune diseases such as SLE (Schaier et al., 2013).

#### **Basic characteristic**

HLA-DR<sup>+</sup> Treg cells represent a distinct class of Tregs characterized by unique biological properties. These cells exhibit the hallmark features of conventional Tregs, including the expression of CD4 and FOXP3, in addition to HLA-DR, a specific surface molecule (Gootjes et al., 2024). The presence of these markers confers a unique identity to HLA-DR<sup>+</sup> Treg cells within the immune system. Notably, HLA-DR<sup>+</sup> Tregs typically express elevated levels of FoxP3, a crucial transcription factor that plays a vital role in maintaining the suppressive function of Tregs (Z. Li et al., 2015). Furthermore, HLA-DR<sup>+</sup> Tregs may also express additional surface markers, such as CD25 and CD38, which are significantly elevated in CD4+ and CD8+ T cell subsets among patients with SLE. These cells are essential for

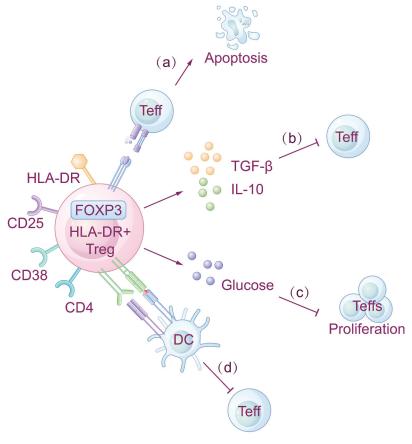


maintaining self-tolerance and immune homeostasis, as they inhibit the onset and progression of autoimmune diseases by suppressing hyperactive immune responses (Raeber et al., 2024).

#### **Functional characteristic**

HLA-DR<sup>+</sup> Tregs constitute a functionally heterogeneous group that inhibits immune responses through a variety of multifunctional and complementary mechanisms. This inhibition is often highly specific to certain types of immune responses, suggesting that customized approaches can address different immune challenges. Although the molecular mechanisms by which HLA-DR<sup>+</sup> Tregs exert their suppressive activity have not been clearly defined, we discuss some immunosuppressive mechanisms that have been proposed (Figure 1).

Figure 1 Mechanisms for Maintaining Treg: Teff Balance. This diagram illustrates the various mechanisms by which HLA-DR+ Tregs interact with effector T cells (Teffs) and antigen-presenting cells (APCs) to modulate immune responses and maintain self-tolerance. (a) Induction of Apoptosis:HLA-DR<sup>+</sup> Tregs induce apoptosis in Teffs through direct cell contact, thereby reducing their numbers and activity (Chen & Oppenheim, 2011). (b) Release of Immunosuppressive Cytokines: HLA-DR<sup>+</sup> Tregs secrete various cytokines, including IL-10 and TGF-β, which inhibit effector T-cell activity and promote immune tolerance (Islam et al., 2021; Palomares et al., 2021). (c) Metabolic Competition: HLA-DR<sup>+</sup> Tregs compete with Teffs for glucose, a critical resource for T cell activation and proliferation, thereby limiting Teff expansion (Clever et al., 2016). (d) Modulation of Antigen Presentation: By interacting with dendritic cells (DCs), HLA-DR<sup>+</sup> Tregs reduce the capacity of these cells to present antigens effectively, which in turn downregulates Teff activation (Kenison et al., 2023).


## Differences and plasticity between HLA-DR<sup>+</sup> and HLA-DR<sup>-</sup> Tregs

The functional and phenotypic attributes of HLA-DR<sup>+</sup> Tregs markedly diverge from those of their HLA-DR<sup>-</sup> counterparts. HLA-DR<sup>+</sup> Tregs are characterized by their potent immunosuppressive properties, which enable them to significantly suppress the activity and proliferation of effector T cells (Machicote et al., 2018; Zhou et al., 2024).

Furthermore, these cells exhibit enhanced stability and plasticity within inflammatory milieus, attributes that are pivotal for the preservation of immunological homeostasis (Ma et al., 2023). Conversely, HLA-DR<sup>-</sup> Tregs have been observed to undergo functional anergy and, under specific conditions, may transdifferentiate into effector T cells, thereby potentially contributing to immune dysregulation (W. Li et al., 2019).

# Mechanisms of HLA-DR<sup>+</sup> Treg cells in SLE

HLA-DR<sup>+</sup> Treg cells show a tendency to change in number and function in patients with SLE. These changes not only affect the patient's ability to immunomodulate, but may also exacerbate disease symptoms. By understanding these cellular changes, researchers and clinicians can better assess the activity of SLE and explore new therapeutic strategies to improve patient prognosis and quality of life.



**Figure 1.** Mechanisms for maintaining Treg: Teff Balance. This diagram illustrates the various mechanisms by which HLA-DR<sup>+</sup> Tregs interact with effector T cells (Teffs) and antigen-presenting cells (APCs) to modulate immune responses and maintain self-tolerance. (a) Induction of Apoptosis: HLA-DR<sup>+</sup> Tregs induce apoptosis in Teffs through direct cell contact, thereby reducing their numbers and activity. (b) Release of Immunosuppressive Cytokines: HLA-DR<sup>+</sup> Tregs secrete various cytokines, including IL-10 and TGF-β, which inhibit effector T-cell activity and promote immune tolerance. (c) Metabolic competition: HLA-DR<sup>+</sup> Tregs compete with Teffs for glucose, a critical resource for T cell activation and proliferation, thereby limiting Teff expansion. (d) Modulation of antigen presentation: By interacting with dendritic cells (DCs), HLA-DR<sup>+</sup> Tregs reduce the capacity of these cells to present antigens effectively, which in turn downregulates Teff activation.

#### Changes in the number of HLA-DR<sup>+</sup> Treg cells

In SLE, there is a significant alteration in the number of HLA-DR<sup>+</sup> Treg, which play a pivotal role in maintaining immune homeostasis. Studies have consistently reported a reduction in the frequency of HLA-DR<sup>+</sup> Treg cells in SLE patients, particularly during active phases of the disease. This decrease is associated with a compromised capacity to regulate autoreactive immune responses, suggesting that HLA-DR<sup>+</sup> Treg cells are integral to the pathogenesis of SLE. The diminished presence of these cells may be attributed to intrinsic abnormalities within SLE, potentially involving autoantibody-mediated depletion, which targets and reduces the population of HLA-DR<sup>+</sup> Treg cells, thereby exacerbating the disease. The work by Shirakawa et al. (1985) and Daca et al. (2011) further underscores the



correlation between the reduced number of HLA-DR<sup>+</sup> Treg cells and disease activity, highlighting the importance of these cells in the immune dysregulation observed in SLE.

In SLE patients, different HLA-DR genotypes are associated with changes in the number of Treg cells. For example, certain risk alleles may be associated with reduced numbers of Treg cells and diversity in clinical manifestations of the disease. A previous Taiwanese study included 234 SLE patients and 346 healthy controls (Yen et al., 2023). HLA-DR genotyping was performed on each subject using the HLA FluoGene DRDQ kit. The results showed that HLA-DR2 was significantly more frequent in SLE patients than in controls (ratio [OR] = 2.05, 95% CI, 1.44–2.92, p < .001.) HLA-DR6 appeared to be negatively correlated with SLE, whereas HLA-DR8 appeared to be positively correlated with SLE. SLE patients harboring HLA-DR2 had an earlier age of disease onset and a higher incidence of oral ulcers, osteonecrosis, and kidney involvement (lupus nephritis). And HLA-DR2 was associated with susceptibility to SLE in the Taiwanese population and was associated with a lower age of disease onset and more severe clinical manifestations. Although the Treg cells in this study were not directly associated with HLA-DR genotypes, extensive evidence supports their critical role in maintaining immune tolerance and suppressing autoimmune responses (Blinova & Zhdanov, 2024). The observed correlation between specific HLA-DR risk alleles and reduced Treg cell numbers may therefore suggest compromised immunomodulatory capacity in SLE patients carrying these genotypes, potentially contributing to clinical heterogeneity (Lu et al., 2021). In addition, studies have explored the association between HLA-DR genotypes and Treg cells and have proposed the hypothesis that HLA-DR risk alleles may increase autoimmune risk by restricting highly variable regions of the T cell receptor (Ishigaki et al., 2022). However, this association needs to be further validated by studies that specifically address the relationship between Treg cells and HLA-DR genotypes.

# Functional changes in HLA-DR<sup>+</sup> Treg cells

In addition to the observed reduction in numbers, the functionality of HLA-DR<sup>+</sup> Treg cells may also be compromised (La Cava, 2018). While some studies suggest that their suppressive function may not be significantly impaired (J. Huang et al., 2024), Treg cell dysfunction is generally regarded as a critical component of the pathological mechanisms underlying SLE. Consequently, it is plausible that both the quantity and functionality of Tregs are affected in SLE; however, the extent of this impact may differ among individuals. This variability underscores the need for more precise phenotypic and functional analyses to further clarify the role of Tregs in the disease.

In patients with SLE, HLA-DR<sup>+</sup> Tregs demonstrate significant alterations in surface marker expression. Notably, there is an upregulation of activation markers, such as CD69 and CD71, which suggests that these cells are in an activated state (Bonelli et al., 2008). CD69 serves as an early activation marker that contributes to lymphocyte retention and tissue localization (Cibrián & Sánchez-Madrid, 2017), while CD71, also known as the transferrin receptor, is crucial for iron uptake and cellular proliferation (Xiong et al., 2023). Despite exhibiting an activated phenotype, the immunosuppressive function of these Tregs may be compromised, indicating a potential ineffectiveness in regulating immune responses (Wegrzyn et al., 2022). This phenomenon may stem from the dysregulation of Treg cell function in SLE patients, which is essential for maintaining immune tolerance and controlling autoimmune reactions. The interplay between the activation

state and the dysfunction of Treg cells in SLE represents a complex area of investigation. Research has indicated that the heightened expression of activation markers such as CD69 and CD71 in Treg cells may correlate with their diminished immunosuppressive capabilities (Hu et al., 2021). These observations align with the established role of Tregs in preserving immune homeostasis and suggest that, in conditions like SLE, Tregs may struggle to efficiently execute their regulatory functions.

In SLE patients, there is a significant correlation between HLA-DR<sup>+</sup> Treg cells and autoantigen responses (Sumida et al., 2024). The self-antigen recognition and suppressive functions of HLA-DR<sup>+</sup> Treg cells may be impaired. Studies have shown that the ability of these cells to respond to self-antigens may be reduced, resulting in insufficient suppression of the autoimmune response and thus exacerbating the disease process (Xiao et al., 2011).

#### Interactions between HLA-DR<sup>+</sup> Treg cells and other immune cells

HLA-DR<sup>+</sup> Treg cells engage with various immune cell types through multiple mechanisms, thereby playing a pivotal role in maintaining immune homeostasis and modulating inflammatory responses. For instance, HLA-DR<sup>+</sup> Treg cells interact with CD80/CD86 on dendritic cells (DCs) via CTLA-4, which inhibits the costimulatory activity of DCs and consequently diminishes the activation of effector T cells (Walker & Sansom, 2015). Furthermore, cytokines secreted by HLA-DR<sup>+</sup> Treg cells, such as IL-10 and TGF-β, not only impede the maturation of dendritic cells but also regulate the functions of other immune cells. During inflammatory responses, HLA-DR<sup>+</sup> Treg cells suppress the activity and migration of neutrophils by secreting TGF-β, thereby attenuating the inflammatory response (Josefowicz et al., 2012; J. Wang et al., 2023). Additionally, HLA-DR<sup>+</sup> Treg cells can inhibit the cytotoxicity of natural killer (NK) cells in a cell contact-dependent manner, reducing their capacity to kill target cells; this inhibitory effect may involve the Fas/FasL pathway (Cencioni et al., 2015). Regarding monocytes and macrophages, HLA-DR<sup>+</sup> Treg cells diminish their activation and decrease the secretion of inflammatory factors through the release of IL-10 and TGF-β (Ou et al., 2023). Moreover, HLA-DR<sup>+</sup> Treg cells can induce apoptosis in macrophages via the Fas/FasL pathway, further curtailing the inflammatory response (Caulfield et al., 2014). In autoimmune diseases such as SLE, the interaction between HLA-DR<sup>+</sup> Treg cells and endothelial cells is also crucial. HLA-DR<sup>+</sup> Treg cells mitigate the inflammatory response of endothelial cells by secreting inhibitory cytokines (e.g., IL-10), thereby regulating the immune response at the site of inflammation (Tsokos, 2024).

HLA-DR<sup>+</sup> Treg cells play a significant role in regulating humoral immunity by suppressing B cell activation and antibody production. In SLE, the dysregulation of T cells leads to aberrant B cell activation, which subsequently triggers the production of autoantibodies (Paredes et al., 2021). HLA-DR<sup>+</sup> Tregs modulate B cell function through various mechanisms, including both cell-contact-dependent interactions and the secretion of inhibitory cytokines such as IL-10 and TGF- $\beta$ . These cytokines diminish B cell proliferation and their capacity to produce antibodies (Chien & Chiang, 2018). Consequently, HLA-DR<sup>+</sup> Tregs mitigate autoantibody production by inhibiting B cell activation. In SLE patients, excessive antibody production is a major contributor to disease symptoms, highlighting the critical regulatory role of HLA-DR<sup>+</sup> Tregs in controlling disease progression (Lyu et al., 2023).



These interactions illustrate that HLA-DR<sup>+</sup> Treg cells exert a wide array of immunosuppressive functions across various immune cell types, which is essential for sustaining immune homeostasis and controlling autoimmune responses. These mechanisms also provide a theoretical foundation for the development of immunotherapy strategies targeting HLA-DR<sup>+</sup> Treg cells.

# Signaling pathways associated with HLA-DR<sup>+</sup> Treg cells in SLE

In SLE, the dysregulation of T cells and the subsequent aberrant activation of B cells play a crucial role in disease pathogenesis (Tenbrock & Rauen, 2022). HLA-DR+ Tregs have emerged as a key subset in modulating immune responses and maintaining immune homeostasis in this context. These cells exhibit unique signaling pathways and mechanisms that contribute to their immunoregulatory functions.

HLA-DR<sup>+</sup> Tregs, similar to classical CD4+FOXP3+ Tregs, rely on cell-to-cell contact for their suppressive functions, primarily through the interaction of CTLA-4 with its ligands (Walker, 2013). This pathway is critical for inhibiting the activation of effector T cells and maintaining peripheral tolerance. Additionally, the programmed death-1 (PD-1) pathway is implicated in the regulation of HLA-DR<sup>+</sup> Tregs, particularly in the context of chronic inflammation. PD-1 signaling can modulate the suppressive capacity of these cells, highlighting its importance in autoimmune diseases like SLE (Ahmed et al., 2018; Machicote et al., 2018; Sagrero-Fabela et al., 2024).

The mammalian target of rapamycin (mTOR) pathway is another key regulator of T cell function and differentiation. In SLE, increased mTORC1 activity has been observed in double-negative T cells, correlating with disease flares. mTORC1 activation promotes the differentiation of pro-inflammatory T cell subsets, such as Th1 and Th17 cells, while inhibiting the development of regulatory T cells (Chi, 2012; Zhao et al., 2022). Conversely, inhibition of mTORC1 has been shown to expand the CD4+FOXP3+ Treg population and suppress Th17 cells, thereby reducing disease activity in SLE patients (Apostolidis et al., 2016; Zhao et al., 2022).

HLA-DR<sup>+</sup> Tregs secrete inhibitory cytokines such as IL-10 and TGF-β, which are essential for their suppressive functions. These cytokines inhibit the proliferation of B cells and reduce antibody production, thereby mitigating autoantibody-mediated pathology in SLE. Furthermore, TGF-β signaling is implicated in the differentiation and stability of Tregs, although its role may vary depending on the inflammatory context (Komai et al., 2018).

Recent studies have highlighted the role of CD132 signaling in SLE pathogenesis. Elevated CD132 expression on T cells and B cells is associated with increased disease activity and pro-inflammatory cytokine production. Blocking CD132 signaling with monoclonal antibodies has been shown to reduce the production of autoantibodies and proinflammatory cytokines, suggesting a potential therapeutic strategy for SLE (Yin et al., 2024).

HLA-DR<sup>+</sup> Tregs can also modulate B cell activation and antibody production through the expression of CD40L (Zhang et al., 2022). CD40L, expressed on the surface of HLA-DR<sup>+</sup> Tregs, interacts with CD40 on B cells, providing a co-stimulatory signal that enhances B cell proliferation and antibody production. This interaction is particularly relevant in SLE, where dysregulated T cell function leads to aberrant B cell activation and autoantibody production. Targeting the CD40/CD40L pathway has been proposed as a potential therapeutic strategy to control B cell-mediated pathology in SLE (Pucino et al., 2020). However, the therapeutic effect of single-targeting CD40L in clinical trials is not ideal. Early clinical trials of monoclonal antibodies targeting CD40L were suspended due to platelet-related thromboembolic complications (Pucino et al., 2020), suggesting the need for a more comprehensive treatment strategy.

Understanding the signaling pathways associated with HLA-DR<sup>+</sup> Tregs in SLE provides valuable insights into the mechanisms underlying disease progression and offers potential targets for therapeutic intervention. Modulating these pathways, either through pharmacological agents or targeted biologics, could enhance the suppressive functions of Tregs and improve clinical outcomes in SLE patients.

# HLA-DR<sup>+</sup> Treg cells as a potential target for SLE therapy

Currently, the primary classes of drugs employed to treat SLE include the following: Antimalarials: Hydroxychloroquine remains the cornerstone of SLE treatment, indicated for nearly all manifestations of the disease. It is effective in alleviating skin symptoms and joint pain while significantly reducing disease activity (Gordon et al., 2018). Glucocorticoids: Agents such as prednisone are highly effective in managing acute symptoms and organ-threatening manifestations. However, prolonged use may increase the risk of organ damage, particularly when dosages exceed 5–7.5 mg/day (Van Staa et al., 2000). Immunosuppressants:Medications such as azathioprine and cyclophosphamide are utilized for severe cases, particularly those involving organ systems, such as lupus nephritis (Basta et al., 2020; Fanouriakis et al., 2024). Their administration necessitates rigorous monitoring to mitigate the risk of adverse effects. Biologics: In recent years, biologics like belimumab have been introduced for the treatment of active SLE, especially in cases where conventional therapies are ineffective. These agents help control the disease by modulating B cell activity (Raja et al., 2020).

New therapeutic strategies are being developed as the mechanisms underlying SLE are intensively studied. Research on HLA-DR<sup>+</sup> Treg cells indicates that these cells play a crucial role in immune tolerance. They help maintain immune tolerance and prevent autoimmune reactions through the regulation of cytokine secretion, direct cell contact, metabolic reprogramming, and antigen presentation (Eggenhuizen et al., 2024). However, in SLE patients, functional defects in HLA-DR<sup>+</sup> Tregs may lead to an overreaction to autoantigens, thereby exacerbating the disease process (W. Li et al., 2019). Therefore, enhancing the function of HLA-DR<sup>+</sup> Tregs may become a new strategy for the treatment of SLE, which deserves further research and exploration (Fanouriakis et al., 2023; Liossis & Staveri, 2021).

Research indicates that strategies aimed at enhancing Treg cell function could be beneficial for patients with SLE. Notably, interleukin (IL)-2, IL-33, and IL-6 have demonstrated potential in improving both the function and quantity of Treg cells (Crayne et al., 2019; Venkatadri et al., 2021). IL-2 plays a crucial role in the maintenance and functionality of Treg cells. Notably, low-dose IL-2 therapy has been demonstrated to increase Treg cell populations, diminish autoimmune responses, and enhance disease outcomes in patients with SLE (Lykhopiy et al., 2023; Raeber et al., 2024). IL-33, an alarmin cytokine, has exhibited protective effects in various inflammatory contexts by modulating the intrinsic immune and inflammatory responses; however, its specific role in lupus nephritis (LN)

requires further investigation (Sarrand & Soyfoo, 2022; Yuan, 2022). While IL-6 is typically associated with disease severity in SLE, recent studies suggest that IL-May 6 also have a protective role in LN by facilitating the expansion of RORyt+Foxp3+ bifunctional Treg cells, which possess enhanced suppressive capabilities (Hagenstein et al., 2019; Korn & Hiltensperger, 2021; Mercader-Salvans et al., 2023; Nepal & Gazeley, 2023; Yi et al., 2020).

SLE is characterized by alternating phases of flare-up and remission, with immunemediated tissue damage during active disease states linked to lymphoid organ dysregulation (Crow, 2023). Conventional therapies often fail to achieve sustained remission, driving interest in Treg-based strategies. These therapies exploit Tregsdual mechanisms of immune tolerance: cytokine modulation (e.g., IL-10 secretion) and direct suppression via cell-contact molecules like CTLA-4 (A. Wang et al., 2024). In this context, researchers developed Fox19CAR-Tregs (Hagen et al., 2024; M. Li et al., 2024), a CD19-targeted chimeric antigen receptor-engineered Treg product. In vitro, these cells inhibited pathogenic B cell proliferation and IL-6 production in a dose-dependent manner within a co-culture system (Doglio et al., 2024). In a humanized mouse model of SLE, a single infusion of Fox19CAR-Tregs was able to limit autoantibody production, delay lymphopenia (a key feature of SLE), and restore the composition of the human immune system in lymphoid organs without detectable toxicity. Despite the short survival time of these engineered cells, target organs in SLE appear to be protected. In conclusion, the ability of Fox19CAR-Tregs to break the vicious cycle that leads to autoimmunity and sustained tissue damage represents an effective and safe therapeutic strategy that permits the restoration of homeostasis in vivo in SLE. This study provides promising preliminary results for CAR-Treg cell therapy in SLE and lays the foundation for future clinical applications.

Immunosuppressive drugs, such as rapamycin, have been developed to enhance the function of Treg cells (Chen et al., 2021). These agents promote Treg cell proliferation and function by modulating various signaling pathways, particularly the mTOR signaling pathway. As an mTOR inhibitor, rapamycin enhances Treg cell stability and inhibits inflammatory responses, which consequently alleviates symptoms of SLE (Kim et al., 2020).

Novel and repurposed therapeutic agents targeting T cell-associated pathways may offer benefits to specific subpopulations of patients with SLE. These agents have been designed to enhance the function of HLA-DR<sup>+</sup> Treg cells while simultaneously suppressing the autoimmune response (Raffin et al., 2020). For instance, Dapirolizumab pegol, an anti-CD40 ligand antibody, inhibits T-cell activation and B-cell differentiation by blocking the interaction between CD40 and its ligand, CD154 (Furie et al., 2021). Although clinical trials of Dapirolizumab pegol in SLE did not meet their primary endpoints, the agent demonstrated an acceptable safety and tolerability profile. Despite the absence of significant efficacy, it exhibited potential in reducing anti-doublestranded DNA antibody levels and improving immunologic markers in SLE patients (Acharya et al., 2023). Another agent, Dalazatide, is an inhibitor of the Kv1.3 potassium channel, which is expressed in a diverse array of immune cells, including effector memory T-cells (Tem) that are implicated in autoimmune diseases (Gubič et al., 2021; Selvakumar et al., 2022). Dalazatide reduces the production of inflammatory cytokines by inhibiting specific channels, which may influence T cell migration and activation. In preclinical and in vitro studies involving SLE, Dalazatide demonstrated the capacity to inhibit the differentiation of Th17 and Th1 cells, while also exhibiting a favorable safety profile in the early phases of clinical trials (Bui & Wilensky, 2010). Tacrolimus, a calmodulin phosphatase inhibitor, impedes T-cell activation and proliferation by blocking IL-2 expression. Preclinical studies in SLE indicated that Tacrolimus, in conjunction with the STAT3 inhibitor ST21, has the potential to enhance Treg cell numbers and suppress the production of B cells, plasma cells, and TNF-alpha within the germinal center (Kogina et al., 2009; Park et al., 2018). Sirolimus, an mTOR inhibitor, reduces T cell activation, proliferation, and differentiation by targeting the mTOR signaling pathway (Kraaijeveld et al., 2019). Clinical trials in SLE revealed that Sirolimus effectively decreased SLEDAI (SLE Disease Activity Index) and BILAG (British Lupus Assessment Group) scores, with Treg cell expansion observed after 12 months of treatment (Eriksson et al., 2019; Hoi et al., 2024; Lai et al., 2018; Sharabi & Tsokos, 2020). These findings suggest that Sirolimus is both safe and effective for patients with SLE; however, not all therapeutic agents have advanced in clinical trials. For instance, anti-IL-12 and IL-23 monoclonal antibodies (Ustekinumab) and a CTLA-4 agonist (Abatacept) did not meet anticipated outcomes in clinical trials for SLE (Han et al., 2023; van Vollenhoven et al., 2022).

# Prospects and challenges of HLA-DR<sup>+</sup> Treg cells in SLE therapy

HLA-DR<sup>+</sup> Tregs demonstrate significant potential in the study and treatment of SLE. Firstly, the levels of HLA-DR<sup>+</sup> Tregs may serve as a novel biomarker for monitoring SLE activity and therapeutic response. In patients with active SLE, the overall percentage of Tregs was significantly lower compared to healthy controls, indicating that a reduction in Tregs may play a role in the pathogenesis of SLE (Eggenhuizen et al., 2024). Furthermore, fluctuations in HLA-DR<sup>+</sup> Tregs during treatment highlight their potential value in assessing the response to SLE therapy. Notably, the baseline frequency of Ki67<sup>+</sup> Tregs (including HLA-DR<sup>+</sup> Tregs) was higher and showed an increase throughout the treatment period, which correlated with a lower frequency of Ki67<sup>+</sup> Tregs in patients who did not experience a relapse compared with those who did (S.-W. Huang et al., 2024). These findings suggest that levels of HLA-DR+ Tregs may be elevated during the active phase of SLE and diminished in the stable phase of the disease, thereby providing a scientific rationale for their potential as biomarkers of SLE. Consequently, monitoring HLA-DR<sup>+</sup> Tregs may be beneficial in evaluating SLE activity and anticipating therapeutic responses, which carries significant implications for the clinical management of patients with SLE. Second, immunotherapeutic strategies targeting HLA-DR<sup>+</sup> Tregs may bring new therapeutic options for SLE patients. Conventional treatments for SLE focus on suppressing the overreaction of the immune system, but are often accompanied by significant side effects. By enhancing the function or number of HLA-DR<sup>+</sup> Tregs, on the other hand, it can be expected to improve the immune tolerance of patients, thereby reducing disease symptoms. This approach would not only be effective in controlling disease activity, but would also provide a safer and more effective treatment pathway by reducing drug dependence and side effects. Finally, several clinical trials are currently evaluating the use of Treg cell therapy in SLE (Table 1). These studies aim to validate the role of HLA-DR<sup>+</sup> Tregs in improving graft survival and inducing graft tolerance, thus providing a new scientific basis for the treatment of SLE. The successful conduct of these clinical trials may revolutionize the treatment of SLE patients, improve their quality of life, and shed light on the treatment of other autoimmune

**Table 1.** Clinical trials of immunomodulatory therapies in systemic lupus erythematosus.

| NCT Number  | Study Title                                                                         | Status     | Intervention                                       | Primary Outcomes                                                     | Key Findings/Mechanistic<br>Insights                                                    |
|-------------|-------------------------------------------------------------------------------------|------------|----------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| NCT06560775 | Effects of Nigella<br>Sativa on T Cells and<br>Cytokine Profile in<br>Pediatric SLE | COMPLETED  | Nigella Sativa<br>oil +<br>Standard<br>SLE therapy | SLEDAI score<br>reduction;<br>Treg/Th17<br>balance<br>modulation     | Improved SLEDAI scores and<br>Treg/Th17 ratio in<br>pediatric SLE patients.             |
| NCT02084238 | Low-dose IL-2<br>Treatment in SLE                                                   | COMPLETED  | Interleukin-2<br>(IL-2)                            | Increased Treg<br>cells; Reduced<br>SELENA-SLEDAI<br>scores          | IL-2 expanded Treg populations (SRI response: 60%).                                     |
| NCT03312335 | Low-dose Interleukin-<br>2 for SLE (Charact-<br>IL-2)                               | COMPLETED  | Low-dose<br>Aldesleukin<br>(IL-2)                  | Treg percentage<br>increase (CD4+<br>T cells)                        | Enhanced Treg functionality and reduced Th17/Tfh cells.                                 |
| NCT04447053 | Sequential Belimumab<br>and T-cell Based<br>Therapy in SLE                          | RECRUITING | Belimumab +<br>Standard of<br>Care (SOC)           | Treg/Teff ratio;<br>TCR sequencing                                   | Modulated Treg subsets and TCR diversity.                                               |
| NCT04077684 | Efficacy and Safety of<br>Low-dose IL-2 in<br>SLE                                   | COMPLETED  | IL-2 (0.2–1<br>MIU)                                | SLE Responder<br>Index-4 (SRI-4)                                     | Restored Treg/Th17 balance (SRI-4 response: 65%).                                       |
| NCT02428309 | Autologous Polyclonal<br>Tregs for Lupus                                            | TERMINATED | Autologous<br>Polyclonal<br>Tregs                  | Safety (Grade ≥3<br>AEs)                                             | Terminated due to safety concerns, but Treg infusion showed transient immunomodulation. |
| NCT04835883 | CS20AT04 (Allogenic<br>Stem Cells) in SLE                                           | RECRUITING | Allogenic bone<br>marrow-<br>derived<br>MSCs       | Corticosteroid<br>reduction;<br>Hematologic/<br>renal<br>improvement | MSCs promoted Treg activity in lupus nephritis/cytopenia.                               |
| NCT06013995 | BMS-986326 (Treg<br>Modulator) in Lupus                                             | RECRUITING | BMS-986326<br>(anti-CD28<br>antagonist)            | Safety; Treg/Tconv<br>ratio                                          | Enhanced Treg stability without significant AEs.                                        |
| NCT03171194 | Mesenchymal Stem<br>Cells for SLE                                                   | COMPLETED  | Umbilical cord-<br>derived<br>MSCs                 | Safety profile;<br>Treg expansion                                    | Increased Treg levels and reduced IL-6/TNF-α.                                           |
| NCT01413230 | Vitamin<br>D Supplementation<br>in SLE                                              | COMPLETED  | Cholecalciferol<br>(Vitamin D)                     | Treg/Th17<br>balance; Gene<br>expression<br>profiling                | Vitamin D increased Treg<br>frequency and reduced<br>Th17 cells.                        |
| NCT01988506 | Induction of Treg by<br>Low-dose IL-2 in<br>Autoimmune<br>Diseases<br>(TRANSREG)    | COMPLETED  | IL-2                                               | Treg percentage increase across 14 autoimmune diseases               | IL-2 universally expanded<br>Tregs, highest efficacy in<br>SLE.                         |

Abbreviations: Treg: Regulatory T cells; Th17: T helper 17 cells; Tfh: Follicular helper T cells; SLEDAI: SLE Disease Activity Index; SRI: SLE Responder Index; MSCs: Mesenchymal Stem Cells.

diseases. Overall, the research and application of HLA-DR<sup>+</sup> Tregs in SLE is promising and deserves further in-depth exploration.

In SLE research, HLA-DR<sup>+</sup> Tregs have shown remarkable potential, yet their application faces several substantial challenges. Cellular heterogeneity is a primary concern. HLA-DR<sup>+</sup> Tregs are not a uniform cell population; they exhibit significant heterogeneity, which may influence their function and therapeutic efficacy. The specific roles of different subpopulations in immunomodulation remain incompletely understood, necessitating in-depth studies to elucidate their contributions to SLE and optimize therapeutic strategies. Moreover, SLE is a complex, multifactorial disease driven by a combination of genetic, environmental, and immunologic factors. The

function of HLA-DR<sup>+</sup> Tregs may be modulated by the interplay of these factors, complicating their role in disease pathogenesis. A comprehensive understanding of HLA-DR<sup>+</sup> Tregs in SLE requires accounting for these variables, highlighting the need for multidisciplinary collaborative research that integrates insights from immunology, genetics, and clinical medicine. Another challenge is the potential for unintended consequences when enhancing the function of HLA-DR<sup>+</sup> Tregs. While this strategy holds promise for improving immune tolerance, it may also lead to immunosuppression and increased infection risk. Ensuring the safety and efficacy of HLA-DR+ Tregbased therapies is thus paramount, requiring a delicate balance that avoids compromising overall immune defense mechanisms. Lastly, the lack of standardized methods for assessing the function and number of HLA-DR<sup>+</sup> Tregs poses a significant barrier. Without uniform assays, comparing and validating results across studies becomes difficult. Establishing reliable and consistent assessment methods is crucial for advancing research and facilitating the translation of findings from bench to bedside. In summary, while HLA-DR<sup>+</sup> Tregs hold great potential for SLE research and treatment, addressing cellular heterogeneity, disease complexity, therapeutic safety, and the need for standardized methods remains essential. Overcoming these challenges will pave the way for personalized treatment approaches and improved prognoses for patients with SLE.

#### **Directions for future research**

The immunomodulatory role and therapeutic potential of HLA-DR<sup>+</sup> Tregs in SLE have gradually emerged; however, their mechanisms and clinical applications require further exploration. Future research should focus on several key aspects: First, a comprehensive analysis of the mechanisms of action of HLA-DR<sup>+</sup> Tregs is essential, including investigations into their gene expression profiles, proteomic characteristics, and interactions with other immune cells. Second, it is important to optimize the clinical application of HLA-DR<sup>+</sup> Tregs by determining the optimal timing and dosage for treatment through clinical trials, as well as exploring methods to enhance cell expansion efficiency in vitro and survival rates in vivo. Additionally, research should be conducted on individualized treatment approaches based on the genetic information and immune characteristics of individual patients, utilizing bioinformatics tools to predict treatment responses and facilitate precision medicine. Finally, strengthening multidisciplinary collaboration, establishing standardized detection methods, and accelerating the translation of basic research into clinical applications are crucial steps. These research directions will provide new insights and strategies for the treatment of SLE and ultimately improve patient prognosis.

#### **Conclusion**

HLA-DR<sup>+</sup> Tregs play an important role in the pathogenesis and treatment of SLE. By enhancing the function of these cells or modulating the cytokines they secrete, it is expected to provide new therapeutic options for SLE patients, thereby improving their quality of life and prognosis. This not only opens a new direction for the treatment of SLE, but also provides a valuable reference for the management of other autoimmune diseases. Future studies should continue to focus on the mechanism and clinical application of HLA-DR<sup>+</sup>



Tregs, with the aim of achieving more precise and effective immunomodulatory treatment strategies.

#### Disclosure statement

No potential conflict of interest was reported by the author(s).

## **Funding**

The author(s) reported there is no funding associated with the work featured in this article.

#### References

- Acharya, C., Magnusson, M. O., Vajjah, P., Oliver, R., & Zamacona, M. (2023). Population pharmacokinetics and exposure-response for dapirolizumab pegol from a phase 2b trial in patients with systemic lupus erythematosus. The Journal of Clinical Pharmacology, 63(4), 435-444. https://doi. org/10.1002/jcph.2188
- Ahmed, A., Adiga, V., Nayak, S., Uday Kumar, J. A. J., Dhar, C., Sahoo, P. N., Sundararaj, B. K., Souza, G. D., & Vyakarnam, A. (2018). Circulating HLA-DR+CD4+ effector memory T cells resistant to CCR5 and PD-L1 mediated suppression compromise regulatory T cell function in tuberculosis. PLOS Pathogens, 14(9), e1007289. https://doi.org/10.1371/journal.ppat.1007289
- Apostolidis, S. A., Rodríguez-Rodríguez, N., Suárez-Fueyo, A., Dioufa, N., Ozcan, E., Crispín, J. C., Tsokos, M. G., & Tsokos, G. C. (2016). Phosphatase PP2A is requisite for the function of regulatory T cells. Nature Immunology, 17(5), 556-564. https://doi.org/10.1038/ni.3390
- Barber, M. R. W., Drenkard, C., Falasinnu, T., Hoi, A., Mak, A., Kow, N. Y., Svenungsson, E., Peterson, J., Clarke, A. E., & Ramsey-Goldman, R. (2021). Global epidemiology of systemic lupus erythematosus. Nature Reviews Rheumatology, 17(9), 515-532. https://doi.org/10.1038/s41584-021-00668-1
- Basta, F., Fasola, F., Triantafyllias, K., & Schwarting, A. (2020). Systemic Lupus Erythematosus (SLE) therapy: The old and the new. Rheumatology and Therapy, 7(3), 433-446. https://doi.org/10.1007/ s40744-020-00212-9
- Blinova, V. G., & Zhdanov, D. D. (2024). Many faces of regulatory T cells: Heterogeneity or plasticity? Cells, 13(11), 959. https://doi.org/10.3390/cells13110959
- Bonelli, M., Savitskaya, A., von Dalwigk, K., Steiner, C. W., Aletaha, D., Smolen, J. S., & Scheinecker, C. (2008). Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (SLE). International Immunology, 20(7), 861-868. https://doi. org/10.1093/intimm/dxn044
- Bui, Q. T., & Wilensky, R. L. (2010). Darapladib. Expert Opinion on Investigational Drugs, 19(1), 161-168. https://doi.org/10.1517/13543780903501513
- Caulfield, A. J., Lathem, W. W., & Heitman, J. (2014). Disruption of fas-fas ligand signaling, apoptosis, and innate immunity by bacterial pathogens. PLOS Pathogens, 10(8), e1004252. https://doi.org/10.1371/journal.ppat.1004252
- Cencioni, M. T., Santini, S., Ruocco, G., Borsellino, G., De Bardi, M., Grasso, M.G., Ruggieri, S., Gasperini, C., Centonze, D., Barilá, D, Battistini, L., & Volpe, E. (2015). Fas-ligand regulates differential activation-induced cell death of human T-helper 1 and 17 cells in healthy donors and multiple sclerosis patients. Cell Death Dis, 6, e1785. https://doi.org/10.1038/cddis.2015.164
- Chen, X., Li, S., Long, D., Shan, J., & Li, Y. (2021). Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation. Cellular Immunology, 365, 104378. https:// doi.org/10.1016/j.cellimm.2021.104378



- Chen, X., & Oppenheim, J. J. (2011). Resolving the identity myth: Key markers of functional CD4 +FoxP3+ regulatory T cells. International Immunopharmacology, 11(10), 1489-1496. https://doi. org/10.1016/j.intimp.2011.05.018
- Chi, H. (2012). Regulation and function of mTOR signalling in Tcell fate decisions. Nature Reviews Immunology, 12(5), 325–38. https://doi.org/10.1038/nri3198
- Chien, C. H., & Chiang, B. L. (2018). Recent advances in regulatory T cells induced by B cells. Cellular and Molecular Immunology, 15(5), 539-541. https://doi.org/10.1038/cmi.2017.130
- Cibrián, D., & Sánchez-Madrid, F. (2017). CD69: From activation marker to metabolic gatekeeper. European Journal of Immunology, 47(6), 946-953. https://doi.org/10.1002/eji.201646837
- Clever, D., Roychoudhuri, R., & Constantinides, M. G., Askenase M.H., Sukumar M., Klebanoff C.A., Eil R.I., Hickman H.D., Yu Z., Pan J.H., Palmer D.C. (2016). Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell, 166(5), 1117-1131.e1114. https://doi.org/10. 1016/j.cell.2016.07.032
- Crayne, C. B., Albeituni, S., Nichols, K. E., & Cron, R. Q. (2019). The immunology of macrophage activation syndrome. Frontiers in Immunology, 10, 119. https://doi.org/10.3389/fimmu.2019.00119
- Crow, M. K. (2023). Pathogenesis of systemic lupus erythematosus: Risks, mechanisms and therapeutic targets. Annals of the Rheumatic Diseases, 82(8), 999-1014. https://doi.org/10.1136/ard-2022-223741
- Daca, A., Czuszyńska, Z., Smoleńska, Z., Zdrojewski, Z., Witkowski, J. M., & Bryl, E. (2011). Two systemic lupus erythematosus (SLE) global disease activity indexes—the SLE disease activity index and the systemic lupus activity measure—demonstrate different correlations with activation of peripheral blood CD4+ T cells. Human Immunology, 72(12), 1160–1167. https://doi.org/10.1016/j. humimm.2011.08.005
- Dikiy, S., & Rudensky, A. Y. (2023). Principles of regulatory T cell function. Immunity, 56(2), 240–255. https://doi.org/10.1016/j.immuni.2023.01.004
- Doglio, M., Ugolini, A., Bercher-Brayer, C., Camisa, B., Toma, C., Norata, R., Del Rosso, S., Greco, R., Ciceri, F., Sanvito, F., Casucci, M., Manfredi, A. A., & Bonini, C. (2024). Regulatory T cells expressing CD19-targeted chimeric antigen receptor restore homeostasis in systemic lupus erythematosus. Nature Communications, 15(1), 2542. https://doi.org/10.1038/s41467-024-46448-9
- Eggenhuizen, P. J., Cheong, R. M. Y., Lo, C., Chang, J., Ng, B. H., Ting, Y. T., Monk, J. A., Loh, K. L., Broury, A., Tay, E. S. V., Shen, C., Zhong, Y., Lim, S., Chung, J. X., Kandane-Rathnayake, R., Koelmeyer, R., Hoi, A., Chaudhry, A., & Morand, E. F. (2024). Smith-specific regulatory T cells halt the progression of lupus nephritis. Nature Communications, 15(1), 899. https://doi.org/10.1038/ s41467-024-45056-x
- Eriksson, P., Wallin, P., & Sjöwall, C. (2019). Clinical experience of sirolimus regarding efficacy and safety in systemic lupus erythematosus. Frontiers in Pharmacology, 10, 82. https://doi.org/10.3389/ fphar.2019.00082
- Fanouriakis, A., Bertsias, G., & Boumpas, D. T. (2024). Response to: Correspondence on 'EULAR recommendations for the management of systemic lupus erythematosus: 2023 update' by Fanouriakiset al. Annals of the Rheumatic Diseases, 83(11), e25. https://doi.org/10.1136/ard-2024-226636
- Fanouriakis, A., Kostopoulou, M., Bertsias, G., & Boumpas, D. T. (2023). Response to: Correspondence on 'EULAR recommendations for the management of systemic lupus erythematosus: 2023 update' by fanouriakis et al. Annals of the Rheumatic Diseases, 83(10), e19. https://doi. org/10.1136/ard-2024-225617
- Furie, R. A., Bruce, I. N., Dörner, T., Leon, M. G., Leszczyński, P., Urowitz, M., Haier, B., Jimenez, T., Brittain, C., Liu, J., Barbey, C., & Stach, C. (2021). Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology (Oxford), 60(11), 5397-5407. https://doi.org/10.1093/rheumatology/keab381
- Gootjes, C., Zwaginga, J. J., Roep, B. O., & Nikolic, T. (2024). Defining human regulatory T cells beyond FOXP3: The need to combine phenotype with function. Cells, 13(11), 941. https://doi.org/ 10.3390/cells13110941
- Gordon, C., Amissah-Arthur, M. B., Gayed, M., Brown, S., Bruce, I. N., D'Cruz, D., Empson, B., Griffiths, B., Jayne, D., Khamashta, M., Lightstone, L., Norton, P., Norton, Y., Schreiber, K., &



- Isenberg, D. (2018). The British society for rheumatology guideline for the management of systemic lupus erythematosus in adults. *Rheumatology (Oxford)*, 57(1), e1–45. https://doi.org/10. 1093/rheumatology/kex286
- Gubič, Š., Hendrickx, L. A., Toplak, Ž., Sterle, M., Peigneur, S., Tomašič, T., Pardo, L. A., Tytgat, J., Zega, A., & Mašič, L. P. (2021). Discovery of K V 1.3 ion channel inhibitors: Medicinal chemistry approaches and challenges. *Medicinal Research Reviews*, 41(4), 2423–2473. https://doi.org/10.1002/med.21800
- Hagen, M., Müller, F., Wirsching, A., Kharboutli, S., Spörl, S., Aigner, M., Völkl, S., Köhler, B., Dörfler, A., Grieshaber-Bouyer, R., Mackensen, A., & Schett, G. (2024). Treatment of CNS systemic lupus erythematosus with CD19 CAR T cells. *Lancet*, 404(10468), 2158–2160. https://doi.org/10.1016/S0140-6736(24)02265-7
- Hagenstein, J., Melderis, S., Nosko, A., Warkotsch, M. T., Richter, J. V., Ramcke, T., Herrnstadt, G. R., Scheller, J., Yan, I., Mittrücker, H.-W., Kluger, M. A., & Steinmetz, O. M. (2019). A novel role for IL-6 receptor classic signaling: Induction of RORγt+Foxp3+ tregs with enhanced suppressive capacity. *Journal of the American Society of Nephrology*, 30(8), 1439–1453. https://doi.org/10.1681/ASN.2019020118
- Han, Y., Liu, L., Zang, B., Liang, R., Zhao, X., & Liu, B. (2023). Advances in natural products and antibody drugs for SLE: New therapeutic ideas. Frontiers in Pharmacology, 14, 1235440. https://doi. org/10.3389/fphar.2023.1235440
- Hoi, A., Igel, T., Mok, C. C., & Arnaud, L. (2024). Systemic lupus erythematosus. *Lancet*, 403(10441), 2326–2338. https://doi.org/10.1016/S0140-6736(24)00398-2
- Honing, D. Y., Luiten, R. M., & Matos, T. R. (2024). Regulatory T cell dysfunction in autoimmune diseases. *International Journal of Molecular Sciences*, 25(13), 7171. https://doi.org/10.3390/ijms25137171
- Hu, W., Wang, Z. M., Feng, Y., Schizas, M., Hoyos, B. E., van der Veeken, J., Verter, J. G., Bou-Puerto, R., & Rudensky, A. Y. (2021). Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. *Nature Immunology*, 22(9), 1163–1174. https://doi.org/10.1038/s41590-021-01001-4
- Huang, J., Li, X., Zhu, Q., Wang, M., Xie, Z., & Zhao, T. (2024). Imbalance of Th17 cells, Treg cells and associated cytokines in patients with systemic lupus erythematosus: A meta-analysis. *Frontiers in Immunology*, 15, 1425847. https://doi.org/10.3389/fimmu.2024.1425847
- Huang, S.W., Jiang, W., Xu, S., Zhang Y., Du J., Wang Y.Q., Yang K.Y., Zhang N., Liu F., Zou G.R., Jin F., Wu H.J., Zhou Y.Y., Zhu X.D., Chen N.Y., Xu C., Qiao H., Liu N., Sun Y., ... Liu X. (2024). Systemic longitudinal immune profiling identifies proliferating Treg cells as predictors of immunotherapy benefit: Biomarker analysis from the phase 3 CONTINUUM and DIPPER trials. *Signal Transduct Target Ther*, 9(1), 285. https://doi.org/10.1038/s41392-024-01988-w
- Ishigaki, K., Lagattuta, K. A., Luo, Y., James, E. A., Buckner, J. H., & Raychaudhuri, S. (2022). HLA autoimmune risk alleles restrict the hypervariable region of T cell receptors. *Nature Genetics*, 54(4), 393–402. https://doi.org/10.1038/s41588-022-01032-z
- Islam, H., Neudorf, H., Mui, A. L., & Little, J. P. (2021). Interpreting 'anti-inflammatory' cytokine responses to exercise: Focus on interleukin-10. *The Journal of Physiology*, 599(23), 5163–5177. https://doi.org/10.1113/JP281356
- Josefowicz, S. Z., Lu, L. F., & Rudensky, A. Y. (2012). Regulatory T cells: Mechanisms of differentiation and function. Annual Review of Immunology, 30(1), 531–564. https://doi.org/10.1146/annurev.immunol.25.022106.141623
- Kenison, J. E., Stevens, N. A., & Quintana, F. J. (2023). Therapeutic induction of antigen-specific immune tolerance. *Nature Reviews Immunology*, 24(5), 338–357. https://doi.org/10.1038/s41577-023-00970-x
- Kim, J., Hope, C. M., Perkins, G. B., Stead, S. O., Scaffidi, J. C., Kette, F. D., Carroll, R. P., Barry, S. C., & Coates, P. T. (2020). Rapamycin and abundant TCR stimulation are required for the generation of stable human induced regulatory T cells. *Clinical & Translational Immunology*, 9(12), e1223. https://doi.org/10.1002/cti2.1223



- Kogina, K., Shoda, H., Yamaguchi, Y., Tsuno, N. H., Takahashi, K., Fujio, K., & Yamamoto, K. (2009). Tacrolimus differentially regulates the proliferation of conventional and regulatory CD4(+) T cells. Molecules and Cells, 28(2), 125-130. https://doi.org/10.1007/s10059-009-0114-z
- Komai, T., Inoue, M., Okamura, T., Morita, K., Iwasaki, Y., Sumitomo, S., Shoda, H., Yamamoto, K., & Fujio, K. (2018). Transforming growth factor-\$\beta\$ and interleukin-10 synergistically regulate humoral immunity via modulating metabolic signals. Frontiers in Immunology, 9, 1364. https:// doi.org/10.3389/fimmu.2018.01364
- Korn, T., & Hiltensperger, M. (2021). Role of IL-6 in the commitment of T cell subsets. Cytokine, 146, 155654. https://doi.org/10.1016/j.cyto.2021.155654
- Kraaijeveld, R., Li, Y., Yan, L., de Leur, K., Dieterich, M., Peeters, A. M. A., Wang, L., Shi, Y., & Baan, C. C. (2019). Inhibition of T helper cell differentiation by Tacrolimus or sirolimus results in reduced B-Cell activation: Effects on T follicular helper cells. Transplantation Proceedings, 51(10), 3463–3473. https://doi.org/10.1016/j.transproceed.2019.08.039
- La Cava, A. (2018). Tregs in SLE: An update. Current Rheumatology Reports, 20(2), 6. https://doi.org/ 10.1007/s11926-018-0714-8
- Lai, Z. W., Kelly, R., Winans, T., Marchena, I., Shadakshari, A., Yu, J., Dawood, M., Garcia, R., Tily, H., Francis, L., Faraone, S. V., Phillips, P. E., & Perl, A. (2018). Sirolimus in patients with clinically active systemic lupus erythematosus resistant to, or intolerant of, conventional medications: A single-arm, open-label, phase 1/2 trial. Lancet, 391(10126), 1186-1196. https://doi.org/10. 1016/S0140-6736(18)30485-9
- Li, M., Zhang, Y., Jiang, N., Ning, C., Wang, Q., Xu, D., Wang, Z., Lv, L., Zhou, D., & Zeng, X. (2024). Anti-CD19 CAR T cells in refractory immune thrombocytopenia of SLE. New England Journal of Medicine, 391(4), 376-378. https://doi.org/10.1056/NEJMc2403743
- Li, W., Deng, C., Yang, H., & Wang, G. (2019). The regulatory T cell in active systemic lupus erythematosus patients: A systemic review and meta-analysis. Frontiers in Immunology, 10, 159. https://doi.org/10.3389/fimmu.2019.00159
- Li, Z., Li, D., Tsun, A., & Li, B. (2015). FOXP3+ regulatory T cells and their functional regulation. Cellular and Molecular Immunology, 12(5), 558-565. https://doi.org/10.1038/cmi.2015.10
- Liossis, S. N., & Staveri, C. (2021). What's new in the treatment of systemic lupus erythematosus. Frontiers in Medicine, 8, 655100. https://doi.org/10.3389/fmed.2021.655100
- Lu, X., Chen, X., Forney, C., Donmez O., Miller D., Parameswaran S., Hong T., Huang Y., Pujato M., Cazares T., Miraldi E., Ray J. P., de Boer C. G., Harley J. B., Weirauch M. T., & Kottyan L. C. (2021). Global discovery of lupus genetic risk variant allelic enhancer activity. Nature Communications, 12 (1), 1611. https://doi.org/10.1038/s41467-021-21854-5
- Lykhopiy, V., Malviya, V., Humblet-Baron, S., & Schlenner, S. M. (2023). IL-2 immunotherapy for targeting regulatory T cells in autoimmunity. Genes and Immunity, 24(5), 248-262. https://doi.org/ 10.1038/s41435-023-00221-y
- Lyu, M. A., Tang, X., Khoury, J. D., Raso, M. G., Huang, M., Zeng, K., Nishimoto, M., Ma, H., Sadeghi, T., Flowers, C. R., & Parmar, S. (2023). Allogeneic cord blood regulatory T cells decrease dsDNA antibody and improve albuminuria in systemic lupus erythematosus. Frontiers in Immunology, 14, 1217121. https://doi.org/10.3389/fimmu.2023.1217121
- Ma, X., Cao, L., Raneri, M., Wang, H., Cao, Q., Zhao, Y., Bediaga, N. G., Naselli, G., Harrison, L. C., Hawthorne, W. J., Hu, M., Yi, S., & O'Connell, P. J. (2023). Human HLA-DR+CD27+ regulatory T cells show enhanced antigen-specific suppressive function. JCI Insight, 8(23). https://doi.org/10. 1172/jci.insight.162978
- Machicote, A., Belén, S., Baz, P., Billordo, L. A., & Fainboim, L. (2018). Human CD8+HLA-DR+ regulatory T cells, similarly to classical CD4+Foxp3+ cells, suppress immune responses via PD-1/ PD-L1 axis. Frontiers in Immunology, 9, 2788. https://doi.org/10.3389/fimmu.2018.02788
- Mercader-Salvans, J., García-González, M., Gómez-Bernal, F., Quevedo-Abeledo, J. C., de Vera-González, A., González-Delgado, A., López-Mejías, R., Martín-González, C., González-Gay, M. Á., & Ferraz-Amaro, I. (2023). Relationship between disease characteristics and circulating interleukin 6 in a well-characterized cohort of patients with systemic lupus erythematosus. International Journal of Molecular Sciences, 24(18), 14006. https://doi.org/10.3390/ijms241814006



- Nepal, D., & Gazeley, D. (2023). Role of IL-6 and IL-6 targeted therapy in systemic lupus erythematosus. *Rheumatology (Oxford)*, 62(12), 3804–3810. https://doi.org/10.1093/rheumatology/kead416
- Ou, Q., Power, R., & Griffin, M. D. (2023). Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. *Frontiers in Immunology*, 14, 1287465. https://doi.org/10.3389/fimmu.2023.1287465
- Palomares, O., Martín-Fontecha, M., & Lauener, R., Traidl-Hoffmann C., Cavkaytar O., Akdis M., & Akdis C. A. Regulatory T cells and immune regulation of allergic diseases: Roles of IL-10 and tgf-β.
- Paredes, J. L., Fernandez-Ruiz, R., & Niewold, T. B. (2021). T cells in systemic lupus erythematosus. *Rheumatic Disease Clinics of North America*, 47(3), 379–393. https://doi.org/10.1016/j.rdc.2021.04.005
- Park, J. S., Kim, S. M., Hwang, S. H., Choi, S.-Y., Kwon, J. Y., Kwok, S.-K., Cho, M.-L., & Park, S.-H. (2018). Combinatory treatment using tacrolimus and a STAT3 inhibitor regulate treg cells and plasma cells. *International Journal of Immunopathology and Pharmacology*, 32, 2058738418778724. https://doi.org/10.1177/2058738418778724
- Pucino, V., Gardner, D. H., & Fisher, B. A. (2020). Rationale for CD40 pathway blockade in autoimmune rheumatic disorders. *The Lancet Rheumatology*, 2(5), e292–e301. https://doi.org/10.1016/S2665-9913(20)30038-2
- Raeber, M. E., Caspar, D. P., Zurbuchen, Y., Guo, N., Schmid, J., Michler, J., Martin, A. C., Steiner, U. C., Moor, A. E., Koning, F., & Boyman, O. (2024). Interleukin-2 immunotherapy reveals human regulatory T cell subsets with distinct functional and tissue-homing characteristics. *Immunity*, *57*(9), 2232–2250.e10. https://doi.org/10.1016/j.immuni.2024.07.016
- Raffin, C., Vo, L. T., & Bluestone, J. A. (2020). Treg cell-based therapies: Challenges and perspectives. *Nature Reviews Immunology*, 20(3), 158–172. https://doi.org/10.1038/s41577-019-0232-6
- Raja, T. W., Veeramuthu, D., Savarimuthu, I., & Al-Dhabi, N. A. (2020). Current trends in the treatment of systemic lupus erythematosus. *Current Pharmaceutical Design*, 26(22), 2602–2609. https://doi.org/10.2174/1381612826666200211122633
- Sagrero-Fabela, N., Chávez-Mireles, R., Salazar-Camarena, D. C., & Palafox-Sánchez, C. A. (2024). Exploring the role of PD-1 in the autoimmune response: Insights into its implication in systemic lupus erythematosus. *International Journal of Molecular Sciences*, 25(14), 7726. https://doi.org/10.3390/ijms25147726
- Sarrand, J., & Soyfoo, M. (2022). Involvement of IL-33 in the pathophysiology of systemic lupus erythematosus: Review. *International Journal of Molecular Sciences*, 23(6), 3138. https://doi.org/10.3390/ijms23063138
- Schaier, M., Seissler, N., Becker, L. E., Schaefer, S. M., Schmitt, E., Meuer, S., Hug, F., Sommerer, C., Waldherr, R., Zeier, M., & Steinborn, A. (2013). The extent of HLA-DR expression on HLA-DR<sup>+</sup> Tregs allows the identification of patients with clinically relevant borderline rejection. *Transplant International*, 26(3), 290–299. https://doi.org/10.1111/tri.12032
- Selvakumar, P., Fernández-Mariño, A. I., Khanra, N., He, C., Paquette, A. J., Wang, B., Huang, R., Smider, V. V., Rice, W. J., Swartz, K. J., & Meyerson, J. R. (2022). Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators. *Nature Communications*, *13*(1), 3854. https://doi.org/10.1038/s41467-022-31285-5
- Sharabi, A., & Tsokos, G. C. (2020). T cell metabolism: New insights in systemic lupus erythematosus pathogenesis and therapy. *Nature Reviews Rheumatology*, *16*(2), 100–112. https://doi.org/10.1038/s41584-019-0356-x
- Shirakawa, F., Yamashita, U., & Suzuki, H. (1985). Reduced function of HLA-DR-positive monocytes in patients with systemic lupus erythematosus (SLE). *Journal of Clinical Immunology*, *5*(6), 396–403. https://doi.org/10.1007/BF00915337
- Sumida, T. S., Cheru, N. T., & Hafler, D. A. (2024). The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. *Nature Reviews Immunology*, 24(7), 503–517. https://doi.org/10.1038/s41577-024-00994-x
- Tenbrock, K., & Rauen, T. (2022). T cell dysregulation in SLE. *Clinical Immunology*, 239, 109031. https://doi.org/10.1016/j.clim.2022.109031
- Tsokos, G. C. (2024). The immunology of systemic lupus erythematosus. *Nature Immunology*, 25(8), 1332–1343. https://doi.org/10.1038/s41590-024-01898-7



- van Vollenhoven R. F., Kalunian, K. C., Dörner, van Vollenhoven, R. F., Dörner, T., Hahn, B. H., Tanaka, Y., Gordon, R. M., Shu, C., Fei, K., Gao, S., Seridi, L., Gallagher, P., Lo, K. H., Berry, P., & Zuraw, Q. C. (2022). Phase 3, multicentre, randomised, placebo-controlled study evaluating the efficacy and safety of ustekinumab in patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 81(11), 1556-1563. https://doi.org/10.1136/ard-2022-222858
- Van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B., & Cooper, C. (2000). Use of oral corticosteroids and risk of fractures. Journal of Bone and Mineral Research, 15(6), 993-1000. https://doi.org/10.1359/jbmr.2000.15.6.993
- Venkatadri, R., Sabapathy, V., Dogan, M., & Sharma, R. (2021). Targeting regulatory T cells for therapy of lupus nephritis. Frontiers in Pharmacology, 12, 806612. https://doi.org/10.3389/fphar. 2021.806612
- Walker, L. S. (2013). Treg and CTLA-4: Two intertwining pathways to immune tolerance. Journal of Autoimmunity, 45, 49–57. https://doi.org/10.1016/j.jaut.2013.06.006
- Walker, L. S., & Sansom, D. M. (2015). Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology, 36(2), 63-70. https://doi.org/10.1016/j.it.2014.12.001
- Wang, A., Wang, Y., Liang, R., Li, B., & Pan, F. (2024). Improving regulatory T cell-based therapy: Insights into post-translational modification regulation. Journal of Genetics and Genomics, 52(2), 145–156. https://doi.org/10.1016/j.jgg.2024.09.014
- Wang, J., Zhao, X., & Wan, Y. Y. (2023). Intricacies of tgf-β signaling in Treg and Th17 cell biology. Cell & Molecular Immunology, 20(9), 1002-1022. https://doi.org/10.1038/s41423-023-01036-7
- Wegrzyn, A. S., Kedzierska, A. E., & Obojski, A. (2022). Identification and classification of distinct surface markers of T regulatory cells. Frontiers in Immunology, 13, 1055805. https://doi.org/10. 3389/fimmu.2022.1055805
- Xiao, J., Qian, K. L., Cao, Q. H., Qiu, C.-L., Qiu, C., Xue, Y.-L., Zhang, X.-Y., Zhong, P., Xu, J.-Q., Li, M.-Y., & Wang, Y. (2011). HLA-DR expression on regulatory T cells is closely associated with the global immune activation in HIV-1 infected subjects naïve to antiretroviral therapy. Chinese Medical Journal, 124(15), 2340-2346.
- Xiong, L., Helm, E. Y., Dean, J. W., Sun, N., Jimenez-Rondan, F. R., & Zhou, L. (2023). Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nature Immunology, 24(10), 1671-1684. https://doi.org/10.1038/s41590-023-01612-z
- Yen, C. Y., Wang, P. Y., Chen, K. Y., Tseng, C.-C., Wu, C.-C., Ou, T.-T., & Yen, J.-H. (2023). HLA-DR genotypes in patients with systemic lupus erythematosus in Taiwan. Journal of the Chinese Medical Association, 86(12), 1060-1065. https://doi.org/10.1097/JCMA.000000000001009
- Yi, G., Zhao, Y., Xie, F., Zhu, F., Wan, Z., Wang, J., Wang, X., Gao, K., Cao, L., Li, X., Chen, C., Kuang, Y., Qiu, X., Yang, H., Wang, J., Su, B., Chen, L., Zhang, W., & Liu, X. (2020). Single-cell rna-seq unveils critical regulators of human FOXP3+ regulatory T cell stability. Science Bulletin, 65 (13), 1114–1124. https://doi.org/10.1016/j.scib.2020.01.002
- Yin, H., Li, L., Feng, X., Wang, Z., Zheng, M., Zhao, J., Fan, X., Wu, W., Gao, L., Zhan, Y., Zhao, M., & Lu, Q. (2024). 2D4, ahumanized monoclonal antibody targeting CD132, is apromising treatment for systemic lupus erythematosus. Signal Transduct Target Ther, 9(1), 323. https://doi.org/10. 1038/s41392-024-02017-6
- Yuan, C. (2022). IL-33 in autoimmunity; possible therapeutic target. International Immunopharmacology, 108, 108887. https://doi.org/10.1016/j.intimp.2022.108887
- Zhang, J., Guo, Q., Dai, D., Yu, J., Wang, L., Wu, Z., Ding, H., Shen, N., & Duan, Y. (2022). Rapamycin-encapsulated costimulatory ICOS/CD40L-bispecific nanoparticles restrict pathogenic helper T-B-cell interactions while in situ suppressing mTOR for lupus treatment. Biomaterials, 289, 121766. https://doi.org/10.1016/j.biomaterials.2022.121766
- Zhao, X., Wang, S., Wang, S., Xie, J., & Cui, D. (2022). mTOR signaling: A pivotal player in Treg cell dysfunction in systemic lupus erythematosus. Clinical Immunology, 245, 109153. https://doi.org/ 10.1016/j.clim.2022.109153
- Zhou, X., Dunham, D., Sindher, S. B., Long A., Fernandes A., Chang I., Assa'ad A., Pongracic J., Spergel J. M., Tam J., Tilles S., Wang J., Boyd S. D., Chinthrajah R. S., & Nadeau K. C. (2024). HLA-DR<sup>+</sup> regulatory T cells and IL-10 are associated with success or failure of desensitization outcomes. Allergy. https://doi.org/10.1111/all.16311



# **Expert Opinion on Biological Therapy**



ISSN: 1471-2598 (Print) 1744-7682 (Online) Journal homepage: www.tandfonline.com/journals/iebt20

# Autoimmune neuro-ophthalmic disorders: pathophysiologic mechanisms and targeted biologic therapies

Lucas W. Rowe, Zachary R. Barry, Devin D. Mackay, Kevin E. Lai & Thomas A. Ciulla

**To cite this article:** Lucas W. Rowe, Zachary R. Barry, Devin D. Mackay, Kevin E. Lai & Thomas A. Ciulla (2025) Autoimmune neuro-ophthalmic disorders: pathophysiologic mechanisms and targeted biologic therapies, Expert Opinion on Biological Therapy, ahead-of-print:ahead-of-print, 1-22, DOI: 10.1080/14712598.2025.2491603

To link to this article: <a href="https://doi.org/10.1080/14712598.2025.2491603">https://doi.org/10.1080/14712598.2025.2491603</a>

|                | Published online: 02 May 2025.        |
|----------------|---------------------------------------|
|                | Submit your article to this journal 🗷 |
| ılıl           | Article views: 154                    |
| Q <sup>L</sup> | View related articles 🗹               |
| CrossMark      | View Crossmark data 🗗                 |

# Taylor & Francis Taylor & Francis Group

#### **REVIEW**



# Autoimmune neuro-ophthalmic disorders: pathophysiologic mechanisms and targeted biologic therapies

Lucas W. Rowe o<sup>a</sup>, Zachary R. Barry<sup>a</sup>, Devin D. Mackay<sup>a,b,c</sup>, Kevin E. Lai<sup>a,d,e,f,g,h</sup> and Thomas A. Ciulla o<sup>a,i</sup>

<sup>a</sup>Department of Ophthalmology, Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA; <sup>b</sup>Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA; 'Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, IN, USA; dOphthalmology Service, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, USA; Neuro-Ophthalmology Service, Midwest Eye Institute, Carmel, IN, USA; 'Circle City Neuro-Ophthalmology, Carmel, IN, USA; 'Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY, USA: hCincinnati Eve Institute, Cincinnati, OH, USA: Retina Service, Midwest Eve Institute, Carmel, IN, USA

#### **ABSTRACT**

Introduction: Autoimmune neuro-ophthalmic disorders encompass a diverse array of conditions, including thyroid eye disease (TED), myasthenia gravis (MG), optic neuropathy due to giant cell arteritis (GCA), and optic neuritis related to multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). While traditional treatments have shown efficacy in managing symptoms, the rapid emergence of biologic therapies has brought forth new avenues for targeted intervention, revolutionizing treatment approaches for these conditions.

Areas covered: This review highlights the pathophysiologic pathways and FDA-approved biologic therapies utilized in the management of autoimmune neuro-ophthalmic disorders. We explore multiple therapeutic approaches for autoimmune neuro-ophthalmic disorders, including IGF-1 R antagonism, IL-6 inhibition, complement inhibition, FcRn targeting, B-cell depletion and T-cell modulation. Literature from clinical trials, observational studies, and meta-analyses through 2024 was evaluated to assess efficacy, safety, and long-term outcomes.

Expert opinion: Biologic therapies represent a significant advancement in autoimmune neuroophthalmic disorders, offering targeted approaches with improved efficacy and safety profiles compared to traditional treatments. Ongoing developments in biomarker identification and delivery systems suggest an increasingly personalized approach to treatment. Future advances will likely focus on optimizing patient selection, reducing costs, improving accessibility, and developing novel therapeutic targets.

#### ARTICLE HISTORY

Received 29 January 2025 Accepted 7 April 2025

#### **KEYWORDS**

Biologic therapy; giant cell arteritis; monoclonal antibody: myasthenia gravis: myelin oligodendrocyte glycoprotein antibodyassociated disease (MOGAD): neuromyelitis optica spectrum disorder (NMOSD): optic neuritis; thyroid eye disease

#### 1. Introduction

neuro-ophthalmic Autoimmune disorders encompass a diverse range of conditions that affect both the nervous system and the visual system, often resulting in complex, debilitating symptoms. These disorders include a variety of conditions such as optic neuropathies, ocular motility dysfunctions, and cranial nerve palsies. Neuro-ophthalmic disorders have historically posed significant diagnostic and therapeutic challenges, requiring an intricate understanding of both neuroanatomy and the physiology of vision.

In the past, treatment approaches for these disorders were largely supportive and symptomatic, commonly employing corticosteroids and other immunosuppressive therapies to manage inflammation and prevent progression in conditions such as optic neuritis (ON), myasthenia gravis (MG), and thyroid eye disease (TED). Surgical interventions, such as thymectomy in some patients with MG or strabismus surgeries for ocular motility dysfunctions, have also played a crucial role in symptom management. However, many of these treatments are limited by long-term inefficacy, risk of side effects, and potential for disease recurrence.

In recent years, the landscape of neuro-ophthalmology has been transformed by the advent of biologic therapies. These treatments, which target specific molecular pathways involved in disease pathogenesis, offer a more precise and targeted approach managing autoimmune neuro-ophthalmic Monoclonal antibodies (mAb) and other biologics that modulate immune responses, block inflammatory cytokines, or inhibit abnormal cell signaling have shown promise in treating conditions such as MG, inflammatory optic neuropathies, and certain types of autoimmune-related ocular diseases. The potential for biologic therapies to provide more durable, effective, and safer options for patients represents a new frontier in neuro-ophthalmology.

This article explores the evolution of treatment strategies in autoimmune neuro-ophthalmic disorders, highlighting the historical challenges in managing these complex conditions. It also examines the emerging role of biologic therapies, focusing on mechanisms of action, clinical applications, and their transformative potential in patient care. To maintain a clear scope, only therapies approved by the United States Food and Drug Administration (FDA) will be cited as examples, despite the breadth of novel treatments currently in clinical development.

#### Article highlights

- · Biologic therapies have transformed the treatment landscape of autoimmune neuro-ophthalmic disorders, including thyroid eye disease (TED), myasthenia gravis (MG), and optic neuritis related to multiple sclerosis (MS), giant cell arteritis (GCA), and neuromyelitis optica spectrum disorder (NMOSD).
- The targeted nature of biologic therapies addresses specific disease mechanisms while dramatically improving the risk-benefit profile compared to traditional broad immunosuppression with corticosteroids, delivering more effective and sustained disease control and avoiding serious complications such as hypertension, diabetes, osteoporosis, and psychiatric effects.
- IGF-1 R antagonism with teprotumumab has demonstrated robust efficacy in TED, achieving significant reductions in proptosis and offering the first targeted therapy for this condition.
- IL-6 inhibition with tocilizumab has demonstrated significant efficacy in GCA, allowing for reduction in corticosteroid use while maintaining disease control.
- Complement inhibition through agents like eculizumab and ravulizumab has revolutionized the treatment of MG and NMOSD, providing effective disease control with favorable long-term safety profiles.
- The emergence of FcRn inhibitors, such as rozanolixizumab and efgartigimod, represents a novel therapeutic approach for MG, offering more convenient administration options and potentially better tolerability compared to traditional treatments.
- B-cell depletion strategies such as ocrelizumab, ofatumumab and ublituximab for MS, and inebilizumab for NMOSD, have shown remarkable efficacy, reducing relapse rates and disease progression.
- T-cell modulating agents like natalizumab and fingolimod work by targeting specific T-cell pathways to reduce inflammation in neurological conditions like MS, showing promise in improving visual outcomes.
- Despite the transformative potential of biologics, challenges remain regarding patient selection, treatment optimization, and healthcare access, highlighting the need for continued research and development of biomarkers.
- The future of neuro-ophthalmic care lies in the development of these more selective targeting mechanisms, improved delivery systems, and personalized treatment approaches guided by biomarker-driven decision making.

# 2. Pathophysiology of common autoimmune neuro-ophthalmic disorders

The pathophysiology of autoimmune neuro-ophthalmic disorders is diverse and complex, ultimately involving a wide array of mechanisms including inflammation, ischemia, and neurodegeneration (Table 1). These conditions can affect the optic nerve, orbital tissues, extraocular muscles, and visual processing pathways in the brain. A deeper understanding of these mechanisms is crucial for developing targeted therapies to treat vision symptoms, prevent damage, and improve the quality of life for affected individuals.

# 2.1. Optic neuritis, multiple sclerosis, neuromyelitis optica spectrum disorder, and myelin oligodendrocyte glycoprotein antibody-associated disease

Optic neuropathies refer to a group of conditions that affect the optic nerve, leading to visual impairment. When an optic neuropathy is caused by acute inflammation, the disorder is termed ON and can lead to demyelination and axonal damage with resulting disruption of visual signal transmission from the retina to the brain. The causes of ON are extensive. However, multiple sclerosis (MS)-associated ON is the most common presentation, accounting for roughly 50-80% of ON cases and, therefore, is conventionally termed 'typical' ON [1]. It is important to note that there is significant geographic variability in the underlying causes of ON; while MS-associated ON predominates in Western countries like the United States and Europe, other causes of ON such as neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are thought to be more prevalent causes than MS in Asian populations, particularly in countries like Japan, China, and India.

Typical (acute demyelinating) ON most commonly affects Caucasian women between 18 and 50 years and presents with the typical features of subacute monocular visual loss with associated pain during eye movements [2]. Vision declines over the first 7 to 10 days and reaches a nadir by 2 weeks. Other signs and symptoms include dyschromatopsia, visual field loss, reduced contrast sensitivity, and the presence of an ipsilateral relative afferent pupillary defect. Optic disc edema is present in approximately one-third of cases, and the remaining two-thirds do not exhibit optic disc edema due to retrobulbar involvement [3]. These typical features can also be noted in a demyelinating clinically isolated syndrome without a known underlying systemic cause but may carry a risk of conversion to MS. The Optic Neuritis Treatment Trial (ONTT) found that 72% of patients with one or more brain lesions on a baseline magnetic resonance imaging (MRI) scan developed MS within 15 years compared to only 25% of patients with no brain lesions at baseline [4]. Idiopathic acute clinically isolated demyelinating ON is also a common cause of ON, though not as common as MS-ON (1).

The pathogenesis of MS-ON appears to be multifactorial and a definitive target antigen has yet to be identified. The optic nerve lesions appear pathologically similar to MS brain lesions. In the active phase, inflammatory demyelination occurs, resulting in vision loss from conduction block. The acute phase is predominantly due to systemic activation of peripheral myelin-reactive CD4+ T cells [5]. The T lymphocytes then infiltrate the central nervous system (CNS) through interaction with endothelial cellular adhesion molecules such as integrin α4β1 and endothelial vascular cell adhesion molecule 1 (VCAM-1), allowing migration across the blood-brain barrier [6,7]. The aberrant T-cells recognize CNS self-antigen, resulting in myelin destruction and axonal damage. This triggers Th1 and Th17 pro-inflammatory cell activation and the release of pro-inflammatory cytokines such as interferon-y and IL-17 [8]. The role of B cells in MS is mainly through the production of antibodies to self-antigens such as anti-myelin basic protein (MBP). Autoantibodies cloned from MS patients against myelin antigen have been shown to be capable of inducing complement-mediated robust oligodendrocyte loss and microglial activation, indicating the potential role of myelin-binding autoantibodies in MS pathogenesis [8]. Improvement in inflammation and vision occurs over weeks to months while remyelination occurs, although it may be incomplete [9].

In contrast, non-MS ON is less frequent and can be related to infectious and immune-mediated diseases such as NMOSD and MOGAD. These cases are more likely to have atypical features, including male gender, age less than 18 or greater than 50, absence of pain, and bilateral presentation [2].

NMOSD, originally known as Devic's disease, is a chronic inflammatory autoimmune disease of the CNS classically

Table 1. Autoimmune neuro-ophthalmic disorders: key features.

| Disorder                                                   | Key clinical features                                                                                                                                                                                                                                                                                                                          | Key diagnostic tests                                                                                                                                                                                                                                                                            | Pathophysiology                                                                                                                                                                                                                                         |
|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiple Sclerosis<br>Associated Optic<br>Neuritis (MS-ON) | <ul> <li>Most common in Caucasian women 18–50 years</li> <li>Subacute monocular visual loss with pain during eye movements</li> <li>Vision decline over 7–10 days</li> <li>Dyschromatopsia</li> <li>Visual field loss</li> <li>Reduced contrast sensitivity</li> <li>Ipsilateral RAPD</li> <li>Mild optic disc edema (1/3 of cases)</li> </ul> | <ul> <li>Visual function testing (visual acuity, color vision, pupillary examination, visual field testing)</li> <li>OCT</li> <li>MRI brain/orbits (demyelinating lesions, focal enhancement of the optic nerve)</li> </ul>                                                                     | <ul> <li>T-cell mediated demyelination</li> <li>CD4+ T cells infiltrate CNS via interaction with integrin α4β1 and VCAM-1</li> <li>B cells produce antibodies to self-antigens</li> <li>Release of pro-inflammatory cytokines (IFN-γ, IL-17)</li> </ul> |
| Neuromyelitis Optica<br>Spectrum Disorder<br>(NMOSD)       | <ul> <li>Profound and persistent<br/>visual loss</li> <li>Atypical optic neuritis, can<br/>be bilateral</li> <li>Longitudinally-extensive<br/>Ttransverse myelitis</li> </ul>                                                                                                                                                                  | <ul> <li>Visual function testing</li> <li>OCT</li> <li>MRI brain/orbits and spine (enhancement of the optic nerve, bilateral optic nerve or chiasmal or hypothalamic involvement, long-itudinally-extensive transverse myelitis)</li> <li>AQP4 antibody testing (positive in 70–80%)</li> </ul> | <ul> <li>AQP4 antibody-mediated astrocyte destruction</li> <li>Complement activation</li> <li>Blood-brain barrier disruption</li> <li>Infiltration of inflammatory cells</li> <li>Secondary oligodendrocyte injury</li> </ul>                           |
| MOG Antibody-<br>Associated Disease<br>(MOGAD)             | <ul> <li>Atypical optic neuritis, can<br/>be bilateral</li> <li>Frequent anterior optic<br/>nerve involvement</li> <li>Optic disc edema, may be<br/>moderate or severe</li> <li>Longitudinally-extensive<br/>transverse myelitis</li> </ul>                                                                                                    | <ul> <li>OCT</li> <li>MRI brain/orbits and spine (optic nerve enhancement, optic nerve<br/>sheath enhancement, longitudinally-extensive transverse myelitis)</li> </ul>                                                                                                                         | <ul> <li>Antibodies against MOG</li> <li>T-cell mediated inflammation</li> <li>Complement activation</li> <li>Increased pro-inflammatory cytokines</li> <li>Myelin-laden macrophage infiltration</li> </ul>                                             |
| Giant Cell Arteritis<br>(GCA)                              | <ul> <li>Age &gt;50 years</li> <li>More common in white women</li> <li>Temporal headache</li> <li>Scalp tenderness</li> <li>Jaw claudication</li> <li>Profound vision loss</li> <li>Pallid optic disc edema</li> </ul>                                                                                                                         | <ul> <li>Visual function testing</li> <li>OCT</li> <li>Fluorescein angiography</li> <li>ESR/CRP/platelets</li> <li>Temporal artery ultrasound</li> <li>Temporal artery biopsy</li> </ul>                                                                                                        | <ul> <li>Granulomatous inflammation<br/>of medium/large vessels</li> <li>Inflammatory cytokine<br/>production</li> <li>Vessel wall inflammation and<br/>luminal occlusion</li> <li>Tissue ischemia</li> </ul>                                           |
| Myasthenia Gravis<br>(MG)                                  | <ul> <li>Fatigue worsens<br/>throughout day</li> <li>Fluctuating muscle<br/>weakness</li> <li>Ocular involvement (ptosis,<br/>diplopia) in 50%</li> <li>Ocular MG can progress to<br/>generalized MG</li> </ul>                                                                                                                                | <ul> <li>Ice pack test</li> <li>Ocular alignment and movements</li> <li>AChR, MuSK, LRP4 antibody testing</li> <li>EMG repetitive nerve stimulation</li> <li>Single fiber EMG</li> </ul>                                                                                                        | <ul> <li>Autoantibodies against AChR,<br/>MuSK, LRP4, others</li> <li>Complement activation</li> <li>Neuromuscular junction<br/>dysfunction</li> <li>Impaired neuromuscular transmission</li> </ul>                                                     |
| Thyroid Eye Disease<br>(TED)                               | <ul> <li>Double vision</li> <li>Dry eye</li> <li>Proptosis</li> <li>Eyelid retraction</li> <li>Periorbital swelling</li> <li>Extraocular muscle enlargement and restriction</li> <li>Exposure keratopathy</li> <li>Optic nerve compression</li> </ul>                                                                                          | <ul> <li>Clinical activity score</li> <li>Visual function testing</li> <li>Ocular alignment and movements</li> <li>Forced duction testing</li> <li>Exophthalmometry</li> <li>Thyroid function tests</li> <li>Anti-TSHR antibodies</li> <li>Orbital imaging (CT/MRI)</li> </ul>                  | <ul> <li>IGF-1 R/TSHR complex activation</li> <li>Orbital fibroblast activation</li> <li>Increased glycosaminoglycan production</li> <li>Orbital tissue inflammation</li> <li>Orbital fat and muscle expansion</li> <li>Late fibrosis</li> </ul>        |

Abbreviations: RAPD = Relative Afferent Pupillary Defect, OCT = Optical Coherence Tomography, AQP4 = Aquaporin-4, MOG = Myelin Oligodendrocyte Glycoprotein, ESR = Erythrocyte Sedimentation Rate, CRP = C-Reactive Protein, AChR = Acetylcholine Receptor, MuSK = Muscle-Specific Kinase, LRP4 = Low-density lipoprotein receptor-related protein 4, EMG = Electromyography, TSHR = Thyroid Stimulating Hormone Receptor, IGF-1 R = Insulin-like Growth Factor 1 Receptor.

characterized by acute ON and transverse myelitis. A hallmark feature of NMO-ON is profound and persistent visual loss, unlike that of MS-ON. NMO-ON may also be differentiated from MS-ON based on imaging. MRI enhancement of the optic nerve in NMO-ON generally involves longer contiguous segments of the optic nerve ('longitudinally extensive lesions') and these lesions are more likely to involve the optic chiasm or adjacent hypothalamus than in MS-ON [10]. In 2004,

a pathogenic NMO-associated IgG antibody was discovered that targeted the water channel membrane protein aquaporin-4 (AQP4) [11]. The AQP4 antibody (AQP4-Ab) is found exclusively in NMOSD patients; however, 20–30% of NMOSD patients are seronegative for AQP4-Ab. The International Panel for NMO Diagnosis revised the diagnostic criteria for NMOSD in 2015 (Table 2) [12]. AQP4 is expressed in astrocytes throughout the CNS including the optic nerve. In NMOSD,

Table 2. The 2015 international panel diagnostic criteria for adult patients with NMOSD. Reproduced with permission from [12], © 2015 American Academy of Neurology, licensed under the CC BY-NC-ND 4.0 license.

#### Core clinical characteristics

- Optic neuritis
- Acute myelitis
- Area postrema syndrome: episode of otherwise unexplained hiccups or nausea and vomiting
- Acute brainstem syndrome
- Symptomatic narcolepsy or acute diencephalic clinical syndrome with NMOSD-typical diencephalic MRI lesions
- Symptomatic cerebral syndrome with NMOSD-typical brain lesions

#### Diagnostic criteria for NMOSD with AQP4-IgG

- At least 1 core clinical characteristic
- Positive test for AQP4-IgG using best available detection method (cell-based assay strongly recommended)
- Exclusion of alternative diagnoses

#### Diagnostic criteria for NMOSD without AQP4-IgG or NMOSD with unknown AQP4-IgG status

- · At least 2 core clinical characteristics occurring as a result of one or more clinical attacks and meeting all of the following requirements:
  - At least 1 core clinical characteristic must be optic neuritis, acute myelitis with LETM, or area postrema syndrome
  - Dissemination in space (2 or more different core clinical characteristics)
  - Fulfillment of additional MRI requirements, as applicable
- · Negative tests for AQP4-IgG using best available detection method, or testing unavailable
- Exclusion of alternative diagnoses

#### Additional MRI requirements for NMOSD without AQP4-IgG and NMOSD with unknown AQP4-IgG status

- Acute optic neuritis
  - Requires brain MRI showing normal findings or only nonspecific white matter lesions, or optic nerve MRI with T2-hyperintense lesion or T1-weighted gadolinium-enhancing lesion extending over > 1/2 optic nerve length or involving optic chiasm
- - Requires associated intramedullary MRI lesion extending over  $\ge 3$  contiguous segments (LETM) or  $\ge 3$  contiguous segments of focal spinal cord atrophy in patients with history compatible with acute myelitis
- Area postrema syndrome
- Requires associated dorsal medulla/area postrema lesions
- Acute brainstem syndrome
- · Requires associated periependymal brainstem lesions

Abbreviations: AQP4 = aquaporin-4; IqG = immunoglobulin G; LETM = longitudinally extensive transverse myelitis lesions; NMOSD = neuromyelitis optica spectrum disorders.

CNS lesions show perivascular deposition of immunoglobulin and complement, corresponding to areas of high AQP4 expression. The binding of AQP4-Ab on astrocytes activates antibody-dependent cell-mediated cytotoxicity, resulting in astrocyte destruction. The release of inflammatory factors, including cytokines and chemokines, disrupts the bloodbrain barrier and allows for infiltration of neutrophils, eosinophils, and macrophages. This results in demyelination through secondary injury of oligodendrocytes [13-16].

MOGAD is an antibody-mediated demyelinating disease that affects the brain, optic nerves, and spinal cord. Myelin oligodendrocyte glycoprotein (MOG) is a transmembrane protein on the outer surface of CNS myelin. High titers of autoantibodies to MOG are associated with a spectrum of demyelinating diseases, including ON, transverse myelitis, acute disseminated encephalomyelitis, and cerebral cortical encephalitis. MOGAD is similar to NMO in that it may cause an atypical ON and transverse myelitis. Like NMO-ON, MOG-ON may differ radiologically from MS-ON in that optic nerve enhancement may be bilateral and include (longitudinallyextensive lesions'). MOGAD also more commonly involves the anterior optic nerves and can have more severe optic disc edema than MS-ON and NMOSD, while NMO more commonly involves the posterior optic nerves, optic chiasm, and optic tracts. Additionally, perineural sheath and orbital fat enhancement are more typical of MOGAD than MS and NMOSD [17]. The pathophysiology of MOGAD is still not clearly understood. A study of biopsy samples showed an abundance of myelin-laden macrophages/microglial cells in areas of active demyelination, with most infiltrating

lymphocytes being CD4+ T cells and a few B cells and CD8+ T cells [18] (Figure 1). This study also revealed complement activation in active lesions, resembling pattern II demyelinating lesions as seen in MS. Additionally, the CSF cytokine/ chemokine profile of MOGAD shows increased proinflammatory cytokines, which include TNF-α, IFNγ, IL-13, IL-6, IL-8, CXCL12, APRIL, BAFF, CXCL13, CCL19, and others [20].

Diagnosis of acute ON begins with history and clinical exam, followed by orbital MRI and NMO/MOG antibody testing when there is clinical suspicion (very young or older age, lack of pain, bilateral or severe vision loss, bilateral or severe optic disc edema). The current standard of treatment for typical ON has been profoundly influenced by the ONTT. In cases of typical acute ON, intravenous (IV) methylprednisolone treatment at 1000 mg/day for three days followed by oral prednisolone (1 mg/kg) for 11 days led to more rapid recovery of vision compared to only oral prednisone at 1 mg/kg body weight for 14 days or placebo treatment. However, final measured outcomes for visual acuity, visual fields, and contrast/ color vision were similar among the three groups [21,22]. Patients with MS-ON who were treated with IV methylprednisolone had fewer MS relapses in the following two years compared to the oral prednisolone and placebo groups; however, the IV group caught up with the 1 mg/kg/day oral prednisone and placebo groups after two years, with no definite long-term protective benefit. Subsequent studies revealed that oral-equivalent dosing of oral prednisone at 1,250 mg per day produced similar outcomes to 1,000 mg IV methylprednisolone per day for the treatment of acute demyelinating ON [23,24] Furthermore, ON caused by MOGAD or NMOSD

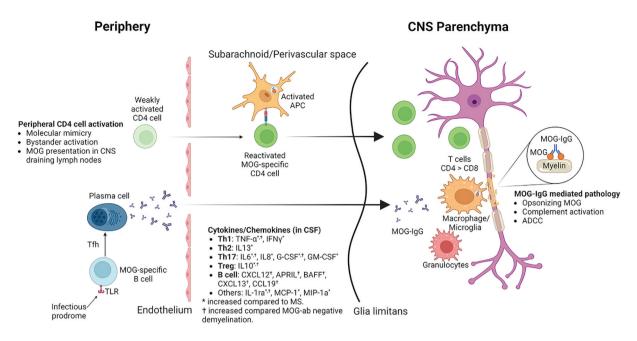



Figure 1. Illustration of the cells and cytokines involved in the pathophysiology of MOGAD. Reproduced from [19], © 2023 Corbali and Chitnis, licensed under the CC by 4.0 license.

was not studied by the ONTT and therefore the results are not directly translatable; other studies suggest that early intervention with corticosteroids and other immunosuppression is critical for the management of these diseases [1]. In cases where there is a lack of improvement with high-dose IV corticosteroids or when NMO is confirmed or highly suspected, plasmapheresis is often indicated [25,26].

#### 2.2. Ischemic optic neuropathy and giant cell arteritis

Ischemic optic neuropathy (ION) results in optic nerve damage due to vascular insufficiency. ION is classified based on the location of the ischemic damage and the etiology. Anterior ION (AION) accounts for 90% of cases and involves ischemia of the optic nerve head, resulting in optic disc edema in the acute phase. Posterior ION (PION) involves parts of the optic nerve posterior to the optic nerve head and, therefore, lacks disc edema.

Based on the presence or absence of vasculitis, ION is further classified as arteritic or non-arteritic, respectively [27]. Non-arteritic AION (NAION or NA-AION) presents as isolated, sudden, painless, monocular vision loss with diffuse or segmental optic disc edema. The disc edema resolves over six to 11 weeks with resulting disc pallor. The severity of vision loss varies from normal visual acuity with visual field defects to profound vision loss. The Ischemic Optic Neuropathy Decompression Trial (IONDT) showed that by six months after onset of symptoms, 43% of patients with visual acuity worse than 20/64 had at least a three-line improvement on the Snellen eye chart without therapeutic intervention [28]. Patients with NAION typically have a 'disc at risk' with a crowded optic nerve head with a small physiological cup. NAION patients often have systemic risk factors such as hypertension, diabetes mellitus, hypercholesterolemia, ischemic heart disease, tobacco use, obstructive sleep apnea, and/or

stroke, which predispose them to blood supply disruption to the small vessels supplying the anterior portion of the optic nerve [27,29,30]. There is no established treatment for NAION, and management is geared toward detecting and controlling vascular risk factors. The IONDT showed no benefit from surgical intervention with optic nerve sheath fenestration [28].

Arteritic AION (AAION) is most commonly associated with giant cell arteritis (GCA), a chronic granulomatous inflammatory disease primarily affecting large and medium-sized arteries. GCA exists on a spectrum that includes polymyalgia rheumatica. The disease almost exclusively affects patients older than 50 years. Incidence increases with age and is more common in white women. Interestingly, immune checkpoint inhibitors, which have been increasingly used for cancer therapy, may increase the risk of GCA by disturbing normal immune tolerance mechanisms in the body, although there may be milder symptoms and better treatment responses compared with traditional GCA [31,32]. Symptoms of GCA may include temporal headache, scalp tenderness, jaw claudication, malaise, weight loss, fever, diplopia, and transient or permanent vision loss. Vision loss in GCA is most commonly due to AAION, which typically presents with 'pallid' optic disc edema, in contrast to the optic nerve edema in NAION, which may be more hyperemic. However, vision loss from GCA can also be due to cilioretinal or central retinal artery occlusion, PION, choroidal infarction, ocular ischemic syndrome, or occipital lobe stroke [33]. Laboratory testing commonly shows elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) and may include thrombocytosis. When there is sufficient clinical suspicion for GCA, confirmatory testing with a temporal artery biopsy is helpful in definitively establishing the diagnosis. The biopsy result is ideally obtained within 14 days of starting steroid therapy. Temporal artery color Doppler ultrasound can detect mural edema of the temporal artery, seen as the 'halo sign,' in patients with active GCA [34]. When

clinical suspicion is sufficiently high, treatment is initiated with high-dose corticosteroids (often IV), even before the diagnosis is confirmed. There is no consensus on the tapering protocol for corticosteroids, though the duration of treatment is typically on the scale of months. Long-term corticosteroid therapy is associated with adverse effects and can cause complications for patients with osteoporosis, diabetes mellitus, hypertension,

#### 2.3. Myasthenia gravis

and infections.

MG is an autoimmune disorder that affects the neuromuscular junction (NMJ), causing weakness in voluntary muscles, including those responsible for ocular movements. It is characterized by autoantibodies directed against acetylcholine receptors (AChR) or, less commonly, against muscle-specific kinase (MuSK) at the NMJ. AChR facilitates nerve-to-muscle signaling by binding the neurotransmitter acetylcholine, while MuSK organizes and stabilizes AChR clusters at the NMJ to ensure efficient signal transmission. In MG, autoantibodies impair neuromuscular transmission either by blocking the AChR, promoting receptor degradation, or activating the complement system, which leads to damage of the postsynaptic membrane, causing muscle fatigue and weakness Approximately 50% of MG patients initially present with only ocular symptoms such as diplopia, ptosis, and orbicularis weakness that is variable. Ocular MG (OMG) is characterized by ocular symptoms exclusively, but can evolve into generalized MG (gMG) in 20-60% of cases [36].

MG is diagnosed by history and examination findings, but the diagnosis is supported by pharmacologic, electrophysiologic, and laboratory testing. Edrophonium chloride was used in the past as a confirmatory diagnostic test, as the medication inhibits the degradation of ACh at the NMJ and results in an observable improvement in muscle weakness when the test is positive. Electromyography (EMG) can elicit evidence of MG by measuring the response to repetitive nerve stimulation (RNS), which shows a decremental response in cases of MG. However, in cases of OMG, RNS may only be abnormal in 30-50% of cases [37]. Single-fiber EMG of the frontalis or orbicularis muscles is more sensitive for detecting MG in purely ocular cases. Several serological tests are used in MG diagnosis as well. AChR antibodies are the most common serological test and have a sensitivity of 80-90% in gMG. However, the sensitivity is thought to be lower in OMG, although more recent availability of newer cell-based assays has increased sensitivity in 'seronegative OMG' [38]. Anti-MuSK antibodies have been reported in 38–54% of patients who are seronegative for AChR antibodies (5–8% overall), but they are rarely present in OMG [39]. Other previously seronegative cases of MG can be identified by the presence of antibodies to low-density lipoprotein receptor-related protein 4 (LRP4) or agrin, or less commonly titin or ryanodine receptor antibodies. LRP4 normally facilitates the activation of MuSK, and LRP4 antibodies are found in approximately 1–5% of MG cases. LRP4 antibody-associated MG is less well-studied than AchR or MuSK antibody-associated MG. Immune checkpoint inhibitors have also been reported to precipitate or exacerbate MG [40,41].

Medical treatment of MG has historically focused on restoring muscle strength through symptom management (e.g. limiting acetylcholine breakdown via acetylcholinesterase inhibitors such as pyridostigmine), immunosuppressive therapies (e.g. corticosteroids or disease modifying therapies), thymectomy, and immunomodulation through IV immunoglobulin (IVIG). Plasmapheresis can be utilized in acute exacerbations that are unresponsive to corticosteroids and acetylcholinesterase inhibitors [42].

Several nonmedical treatments are available for the ophthalmic manifestations of MG if there is incomplete to no response to medical therapy [43]. For ptosis, mechanical elevation of the weak eyelid by a 3D printed crutch or applying cosmetic eyelid tape may be beneficial. For diplopia, monocular occlusion may be the most effective treatment due to the variable incomitance of the strabismus, but at the expense of binocularity and stereopsis. In stable cases of diplopia, prism spectacles and strabismus surgery may also be viable treatment options.

TED is an autoimmune condition affecting the orbital tissues that

#### 2.4. Thyroid eye disease

may result in an increase in orbital fat and proptosis (forward displacement of the eye), extraocular muscle enlargement and restrictive strabismus, orbital fibrosis, conjunctival injection, chemosis, and eyelid retraction and edema. It is most commonly associated with Graves' disease, though it can also occur in patients with other thyroid conditions such as Hashimoto's thyroiditis or precede subsequent hyperthyroidism. Although the precise triggers of TED are not fully understood, a key early step in its development involves the production of autoantibodies targeting the thyroid-stimulating hormone receptor (TSHR), found in both the thyroid gland and in the orbital tissues of TED patients [44,45]. Central to TED pathophysiology is an intricate interaction between the TSHR and insulin-like growth factor-1 receptor (IGF-1 R) on orbital fibroblasts and preadipocytes [46]. IGF-1 R is a transmembrane protein structurally similar to the insulin receptor; it mediates the actions of insulin-like growth factor 1 (IGF-1), a hormone critical for cell growth and division [47]. Importantly, TSHR does not act alone in promoting disease progression; instead, it forms a complex with IGF-1 R, which involves cross-talk (transactivation) between TSHR and IGF-1 R, an established signaling mechanism between G protein-coupled receptors and receptor tyrosine kinases [46,48]. This process sets off a cascade of inflammatory events driving the characteristic symptoms of TED. In TED, IGF-1 R is overexpressed in orbital fibroblasts, leading to increased sensitivity and response to IGF-1, which exacerbates inflammation, extraocular muscle and fat expansion and subsequent complications, with eventual fibrosis of the affected tissues [48,49]. Hyaluronic acid and other glycosaminoglycans are released, leading to fluid accumulation in orbital tissues. The ensuing expansion of orbital fat and muscle, results in proptosis and impaired venous drainage, which exacerbates fluid retention in the orbit. Impaired extraocular muscle function from globe displacement and muscle body engorgement produces a mechanical strabismus, often presenting as diplopia. Globe exposure may cause dry eye, conjunctivitis, and blurred vision. The orbital inflammatory reaction often produces periorbital swelling and orbital discomfort, with severe cases resulting in optic nerve compromise from direct compression

by enlarged extraocular muscles and surrounding orbital tissues near the orbital apex and/or significant traction from axial proptosis.

TED is a clinical diagnosis based on characteristic ocular symptoms like proptosis, eyelid retraction, restrictive strabismus, and periorbital swelling. Hyperthyroidism and Graves' disease can be confirmed by measuring TSH, free T4, total T3 levels, and testing for anti-TSHR antibodies. TED is then confirmed through an eye exam, noting signs like periorbital swelling, chemosis, lid retraction, limited ductions, strabismus, and measuring proptosis with an exophthalmometer.

Traditional TED treatments have aimed to reduce inflammation and alleviate symptoms. For decades, corticosteroids were the cornerstone of TED management due to their potent anti-inflammatory effects [50]. In many parts of the world, IV corticosteroids remain the recommended first-line treatment for moderate to severe TED [51]. Corticosteroids reduce the inflammatory milieu in the orbit, providing symptomatic relief during the active phase of the disease. While corticosteroids effectively reduce acute inflammation, they show limited impact on long-term outcomes, such as proptosis and diplopia. Furthermore, they do not address the underlying autoimmune mechanisms or halt disease progression. Relapse rates are high once corticosteroids are tapered. Supportive therapies include artificial tears and selenium supplements. However, these approaches offer limited relief and have minimal impact on the disease's underlying mechanisms. Orbital decompression surgery, strabismus surgery, and eyelid retraction surgery offer mechanical solutions to moderate and severe TED. Indications for these procedures may include severe proptosis, cornea-threatening exposure, or compressive optic neuropathy for orbital decompression surgery, stable large-angle and/or incomitant strabismus for strabismus surgery, and exposure keratopathy for eyelid retraction surgery.

# 3. Biologic therapies in autoimmune neuro-ophthalmic disorders

mAbs have emerged as promising therapies in the management of several autoimmune neuro-ophthalmic disorders (Table 3). Their precision has led to significant enhancements in clinical outcomes, including reductions in relapse rates and disease progression, preservation of visual function, and overall improvements in patient quality of life [52]. These therapies have also helped minimize treatment adverse effects and have helped improve the response to treatment. FDA-approved mAbs used in the treatment of autoimmune neuro-ophthalmic disorders will be reviewed from those that target end organ specific receptors involved in disease pathophysiology to those that affect entire subsets of immune system effector cells.

# 3.1. IGF1-R antagonism

IGF-IR is a receptor tyrosine kinase that plays a pivotal role in cellular growth, differentiation, and survival. As previously noted, in TED, IGF-IR is overexpressed on orbital fibroblasts. This overexpression is functionally significant, as IGF-IR forms a signaling complex via crosstalk or transactivation with

TSHR, enhancing the pathological effects of thyroid stimulating immunoglobulins [46,48]. The activation of this IGF-IR /TSHR complex drives fibroblast proliferation, adipogenesis, and the secretion of pro-inflammatory cytokines and extracellular matrix components such as hyaluronan. These processes contribute to the characteristic tissue expansion, fibrosis, and chronic inflammation seen in Interestingly, IGF-1 has been shown to amplify the effect of TSH on thyroid follicular epithelial cells [53]. Furthermore, disrupting IGF-1 signaling in vitro blocks downstream effects of TSHR activation, such as Erk activation [48], supporting the role of IGF-IR as an important therapeutic target in TED, providing a dual hit approach to interrupt signaling from both TSHR and IGF-IR.

Teprotumumab-trbw (Tepezza, Amgen, Thousand Oaks, CA, U.S.A.) is a fully humanized mAb that was approved in 2020 by the FDA for the treatment of TED. Teprotumumab binds IGF-1 R and prevents the downstream signal transduction pathway of IGF-1 R/TSHR complexes. In two registration studies, a Phase 2 study and a Phase 3 study (OPTIC), teprotumumab demonstrated efficacy in reducing inflammation, proptosis, diplopia, and improving quality of life in TED patients [54,55]. These clinical trials investigated teprotumumab (administered IV at 10 mg/kg of body weight for the first dose followed by 20 mg/ kg thereafter at three-week intervals over a period of 21 weeks) in active, moderate-to-severe TED of acute (≤ nine months) onset [55]. Compared to placebo, teprotumumab demonstrated significantly better outcomes in achieving at least 2 mm of proptosis improvement at 24 weeks (69% vs 20% and 83% vs 10%, respectively, in each trial), Clinical Activity Score of 0 or 1, diplopia response, and mean change in Graves' ophthalmopathy-specific quality-of-life overall score [54,55].

The Phase 3 OPTIC-X trial investigated the use of IV teprotumumab in the patients who had initially received placebo in the OPTIC study [56]. Notably, this treatment group had a longer duration of TED compared to the treatment group in OPTIC (median 12.9 months in OPTIC-X vs 6.3 months in OPTIC). This study demonstrated that TED patients with longer disease duration responded similarly to those treated earlier in the disease course. This study also evaluated patients with an insufficient initial response or flare after receiving teprotumumab, and suggested benefit from additional teprotumumab therapy [56].

In 2023, the FDA expanded the label of teprotumumab's approval for TED to include any disease activity or duration [57]. This update followed the results of a Phase 4 study evaluating the efficacy of teprotumumab in patients with chronic TED and low disease activity [58]. At week 24, proptosis improvement was greater with teprotumumab than with placebo (p < 0.01), while the proportion of adverse events were similar between the groups. These results established the efficacy of teprotumumab independent of disease duration or activity.

During clinical trials for teprotumumab, reported side effects included muscle spasm, nausea, alopecia, diarrhea, fatigue, hyperglycemia, hearing impairment, dysgeusia, headache, dry skin, weight decreased, nail disorders and menstrual disorders [55,56,59]. Less common but more severe reactions included



Table 3. Autoimmune neuro-ophthalmic biologic therapeutic classes and fda-approved therapies.

| Drug Class and<br>Mechanism of Action                                                                                                      | FDA-approved<br>Agents and Route                                 | Route | FDA-Approved Neuro-<br>Ophthalmic Indications                                         | Key Features                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>1. IGF-1R Antagonists</li> <li>Bind IGF-1R and prevent downstream signaling</li> <li>Block IGF-1R/TSHR transactivation</li> </ul> | <b>Teprotumumab</b> (Tepezza, Amgen)                             | IV    | TED (regardless of<br>disease activity or<br>duration)                                | <ul> <li>Administered IV every 3 weeks x 8 infusions</li> <li>First targeted therapy for TED</li> <li>Significant proptosis reduction</li> <li>Effective in both active and chronic TED</li> </ul>                                                                                                                                  |
| <ul><li>2. IL-6 Inhibitors</li><li>Bind IL-6 receptor</li><li>Block IL-6 signaling pathway</li></ul>                                       | <b>Tocilizumab</b> (Actemra, Genentech)                          | SC    | • GCA                                                                                 | <ul> <li>Blackbox warning regarding serious infections</li> <li>Requires TB testing prior to use</li> <li>Administered SC once every week, in combination with a tapering course of corticosteroids</li> </ul>                                                                                                                      |
| Reduce inflammatory cascade                                                                                                                | Satralizumab<br>(Enspryng,<br>Genentech)                         | SC    | AQP4 Ab-positive<br>NMOSD                                                             | <ul> <li>Administered SC at weeks 0, 2, and 4, followed by maintenance every 4 weeks</li> <li>First subcutaneous NMOSD treatment</li> </ul>                                                                                                                                                                                         |
| <ul><li>3. Complement Inhibitors</li><li>C5 Inhibitors</li><li>Prevent terminal complement activation</li></ul>                            | <b>Eculizumab</b> (Soliris, Alexion)                             | IV    | <ul> <li>AQP4 Ab-positive<br/>NMOSD</li> <li>Anti-AChR Ab-positive<br/>gMG</li> </ul> | <ul> <li>Blackbox warning regarding infections caused by Neisseria meningitidis</li> <li>Requires meningococcal vaccination prior to use</li> <li>Administered IV weekly at weeks 0-5, followed by maintenance every 2 weeks</li> <li>First complement inhibitor approved for MG</li> </ul>                                         |
|                                                                                                                                            | Ravulizumab<br>(Ultomiris,<br>Alexion)                           | IV    | <ul> <li>AQP4 Ab-positive<br/>NMOSD</li> <li>Anti-AChR Ab-positive<br/>gMG</li> </ul> | <ul> <li>Blackbox warning regarding infections caused by Neisseria meningitidis</li> <li>Requires meningococcal vaccination prior to use</li> <li>Administered IV every 8 weeks, starting 2 weeks after loading dose</li> <li>Similar efficacy to eculizumab with fewer infusions</li> </ul>                                        |
|                                                                                                                                            | <b>Zilucoplan</b><br>(Zilbrysq, UCB)                             | SC    | Anti-AChR Ab-positive<br>gMG                                                          | <ul> <li>Not a mAb, but a small, synthetic peptide</li> <li>Blackbox warning regarding infections caused by Neisseria meningitidis</li> <li>Requires meningococcal vaccination prior to use</li> <li>Administered SC daily</li> <li>Only FDA-approved self-administered complement C5 inhibitor for the treatment of gMG</li> </ul> |
| <ul><li>4. FcRn Inhibitors</li><li>Bind to FcRn</li><li>Prevent IgG recycling</li></ul>                                                    | <b>Rozanolixizumab</b> (Rystiggo, UCB)                           | SC    | Anti-AChR and MuSK<br>Ab-positive gMG                                                 | <ul> <li>Administered in cycles SC once weekly for 6 weeks</li> <li>The safety of initiating subsequent cycles sooner than 63 days from the start of the previous treatment cycle has not been established</li> <li>First approved for both AChR and MuSK MG</li> </ul>                                                             |
| Decrease IgG levels                                                                                                                        | <b>Efgartigimod</b><br>(Vyvgart, Argenx)                         | IV    | Anti-AChR Ab-positive<br>gMG                                                          | <ul> <li>Not a full length mAb, but a Fc fragment of IgG1</li> <li>Administered in cycles IV once weekly for 4 weeks</li> <li>The safety of initiating subsequent cycles sooner than 50 days from the start of the previous treatment cycle has not been established</li> </ul>                                                     |
|                                                                                                                                            | Efgartigimod +<br>Hyaluronidase<br>(Vyvgart Hytrulo,<br>Argenx)  | SC    | Anti-AChR Ab-positive<br>gMG                                                          | <ul> <li>Not a full length mAb, but a Fc fragment of IgG1</li> <li>Administered in cycles SC once weekly for 4 weeks</li> <li>The safety of initiating subsequent cycles sooner than 50 days from the start of the previous treatment cycle has not been established</li> </ul>                                                     |
| <ul> <li>5a. B-Cell Depleting Agents</li> <li>Target CD20+ B cells</li> <li>Lead to B cell depletion via ADCC and CDC</li> </ul>           | <b>Ocrelizumab</b> (Ocrevus, Genentech)                          | IV    | • RMS<br>• PPMS                                                                       | <ul> <li>Administered IV at weeks 0 and 2 then every 6 months</li> <li>Twice-yearly maintenance dosing</li> <li>First approved for PPMS</li> <li>Reduces relapse rates and disability progression</li> <li>Contraindicated in active hepatitis B infection</li> </ul>                                                               |
| via ADEC and EDE                                                                                                                           | Ocrelizumab +<br>Hyaluronidase<br>(Ocrevus Zunovo,<br>Genentech) | SC    | • RMS<br>• PPMS                                                                       | <ul> <li>Administered SC every 6 months</li> <li>No loading dose</li> <li>Premedicate with oral corticosteroid and antihistamine at least 30 minutes prior to each injection</li> <li>Contraindicated in active hepatitis B infection</li> </ul>                                                                                    |
|                                                                                                                                            | Ofatumumab<br>(Kesimpta,<br>Novartis)                            | SC    | <ul><li>RMS</li><li>Active Secondary<br/>Progressive MS</li></ul>                     | <ul> <li>Administered SC at Weeks 0, 1, and 2, then monthly starting at Week 4</li> <li>First self-administered anti-CD20 therapy</li> </ul>                                                                                                                                                                                        |
|                                                                                                                                            | <b>Ublituximab</b><br>(Briumvi, TG<br>Therapeutics)              | IV    | <ul><li>RMS</li><li>Active Secondary<br/>Progressive MS</li></ul>                     | <ul> <li>Administered IV at weeks 0 and 2, then 24 weeks after the first infusion and then every 24 weeks</li> <li>Twice-yearly maintenance dosing</li> </ul>                                                                                                                                                                       |

Table 3. (Continued).

| Drug Class and<br>Mechanism of Action<br><b>5b. B-Cell Depleting</b>                                                  | FDA-approved<br>Agents and Route<br>Inebilizumab | Route<br>IV | FDA-Approved Neuro-<br>Ophthalmic Indications  • AQP4 Ab-positive                                                  | Key Features  • Administered IV at weeks 0 and 2, then 6 months from the first infusion                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Agents                                                                                                                | (Uplizna, Amgen)                                 |             | NMOSD                                                                                                              | and then every 6 months  Twice-yearly maintenance dosing                                                                                                           |
| <ul><li> Target CD19+ B cells</li><li> Broader B cell depletion</li></ul>                                             |                                                  |             |                                                                                                                    | • Twice-yearly maintenance dosing                                                                                                                                  |
| 6a. T-Cell Modulators                                                                                                 | Natalizumab                                      | IV          | • RMS                                                                                                              | Blackbox warning regarding increased risk of progressive multifocal                                                                                                |
| <ul> <li>Integrin receptor<br/>antagonists</li> </ul>                                                                 | (Tysabri, Biogen)                                |             |                                                                                                                    | <ul><li>leukoencephalopathy (PML), an opportunistic viral infection of the brain</li><li>Administered IV every 4 weeks</li></ul>                                   |
| <ul> <li>Block α4β1 integrin</li> </ul>                                                                               |                                                  |             |                                                                                                                    |                                                                                                                                                                    |
| <ul> <li>Prevent T-cell CNS migration</li> </ul>                                                                      |                                                  |             |                                                                                                                    |                                                                                                                                                                    |
| <ul> <li>6b. T-Cell Modulators</li> <li>S1P receptor<br/>modulators</li> <li>Prevent lymphocyte<br/>egress</li> </ul> | <b>Fingolimod</b> (Gilenya, Novartis)            | Oral        | <ul> <li>RMS</li> <li>Active Secondary<br/>Progressive MS</li> <li>Pediatric MS (ages 10<br/>and older)</li> </ul> | <ul> <li>Not a full length mAb, but a sphingosine 1-phosphate receptor modulator</li> <li>Administered orally once daily</li> <li>First oral MS therapy</li> </ul> |

Abbreviations: IGF-1R = Insulin-like Growth Factor 1 Receptor, TSHR = Thyroid Stimulating Hormone Receptor, TED = Thyroid Eye Disease, IL-6 = Interleukin 6, NMOSD = Neuromyelitis Optica Spectrum Disorder, AQP4 = Aquaporin-4, gMG = Generalized Myasthenia Gravis, AChR = Acetylcholine Receptor, MAC = Membrane Attack Complex, MS = Multiple Sclerosis, PPMS = Primary Progressive Multiple Sclerosis, ADCC = Antibody-Dependent Cell-mediated Cytotoxicity, CDC = Complement-Dependent Cytotoxicity, RMS = Relapsing forms of Multiple Sclerosis, PPMS = Primary Progressive Multiple Sclerosis, PML = Progressive Multifocal Leukoencephalopathy, S1P = Sphingosine-1-Phosphate, FcRn = Neonatal Fc Receptor, MuSK = Muscle-Specific Kinase

hearing loss, Hashimoto's encephalopathy, and exacerbation of preexisting inflammatory bowel disease (IBD). The majority of adverse events experienced with teprotumumab treatment were graded as mild to moderate and were manageable in the trials, with few discontinuations or therapy interruptions.

Teprotumumab represents a major advancement in TED treatment. Unlike corticosteroids, which suppress inflammation broadly, IGF1-R antagonism specifically inhibits the pathological processes driving TED. The clinical trials described above demonstrate that teprotumumab achieves significant and sustained reductions in proptosis, a key feature of TED that is resistant to other therapies [60]. Moreover, its effects on orbital tissue remodeling, as demonstrated on orbital imaging in chronic TED, suggest that it may also reverse some of the structural changes in extraocular muscles and orbital fat which characterize the chronic phase of the disease [58]. As teprotumumab becomes more widely used among patients with TED, continued monitoring by healthcare providers will enhance our understanding of its risk-benefit profile in broader patient populations.

#### 3.2. IL-6 inhibitors

Interleukin-6 (IL-6) is a pro-inflammatory cytokine involved in the immune response, inflammation, and disease processes. IL-6 is produced by T cells, B cells, monocytes, and fibroblasts in response to infections, tissue injury, or immune activation. Once IL-6 binds to its receptor, IL-6 R, it associates with a signal-transducing protein called gp130, which is ubiquitously expressed on cells [61]. This initiates downstream signaling pathways, particularly the JAK/STAT pathway, which activates gene transcription for pro-inflammatory cytokines and acute-phase proteins, as well as the MAPK and PI3K/Akt pathways, which promote inflammation, cell proliferation, and survival (Figure 2) [63]. Dysregulated IL-6 signaling can

generate significant inflammatory cytokine production and be implicated in the pathophysiology of chronic inflammatory diseases, autoimmune disorders, and cancer [64,65].

IL-6 inhibitors can block IL-6 signaling by binding IL-6 itself to prevent receptor interaction, by binding the IL-6 receptor, or by disrupting gp130 signaling. IL-6 inhibitors are used to treat inflammatory and autoimmune diseases, such as rheumatoid arthritis, juvenile idiopathic arthritis, and GCA [66]. By inhibiting IL-6 signaling, inflammation decreases, reducing symptoms such as swelling, pain and joint damage. In addition, acute-phase proteins such as CRP are reduced, and disease progression is mitigated [67,68].

Tocilizumab (Actemra, Genentech, South San Francisco, CA, U.S.A.) is a humanized IL-6 R-inhibiting mAb used in the treatment of rheumatoid arthritis, GCA, systemic sclerosis-associated interstitial lung disease, polyarticular juvenile idiopathic arthritis, systemic juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19. Tocilizumab is administered as a subcutaneous injection and became the first FDA-approved therapy for the treatment of adult patients with GCA. The approval followed the positive results from the Phase 3 Giant Cell Arteritis Actemra (GiACTA) study demonstrating that tocilizumab combined with a sixmonth steroid regimen achieved remission through 52 weeks in 56% and 53% of patients when administered weekly and biweekly, respectively [67]. This compared to 14% and 18% in the placebo groups combined with a 26-week steroid taper and 52-week steroid taper, respectively. The extension phase of the GiACTA trial included patients who were in clinical remission at one year and were treated at the investigators' discretion including no treatment, tocilizumab, glucocorticoids, methotrexate, or combinations of these, for two years. 42% of patients treated with tocilizumab for one year maintained drug-free remission during the two years following tocilizumab cessation [69]. Both weekly and biweekly tocilizumab groups received significantly less

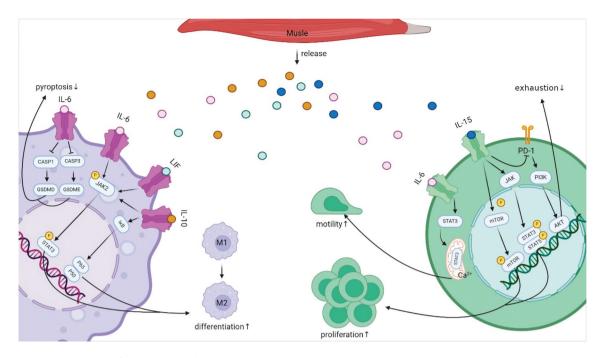



Figure 2. Illustrative representation of interleukin signaling pathways in macrophages and T cells, including IL-6 interaction with the caspase-3-GSDME pathway, caspase-1-GSDMD pathway, JAK/STAT3 pathway, and STAT3/mitochondrial pathway. Reproduced from [62], © 2024 Lu et al., licensed under the CC by 4.0 license.

median cumulative glucocorticoid doses over three years compared to the placebo groups. Tocilizumab also restored clinical remission among patients who relapsed during the two years following tocilizumab cessation [69]. Adverse events associated with tocilizumab include neutropenia, opportunistic infections, temporarily elevated liver enzymes, and higher serum cholesterol levels. Neutropenia occurred at a similar rate in the GiACTA trial (4%) to rates observed in previous trials of tocilizumab. No new or unexpected safety findings were reported over the full three years of the extension phase of the GiACTA trial [69]. Nevertheless, the US prescribing information contains a black box warning regarding serious infection and advises tuberculosis testing prior to use.

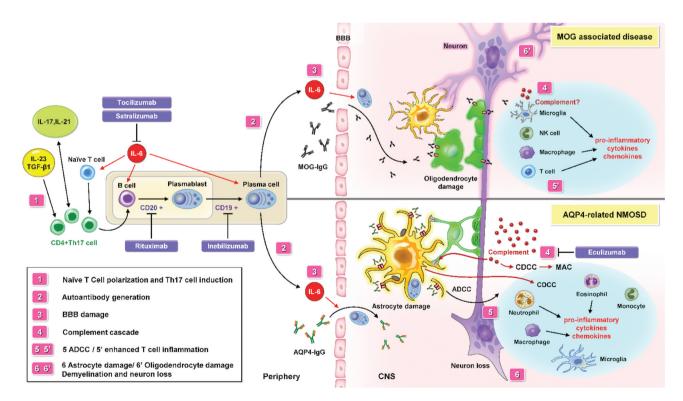



Figure 3. Schematic depiction of the pathologic mechanisms involved in NMOSD and MOGAD, and therapies targeting complement activation (eculizumab), IL-6 R signaling (tocilizumab, satralizumab), and plasma cells producing AQP-4 and MOG IgG abs (rituximab, inebilizumab). Reproduced from [70], © 2022 Huang et al., licensed under the CC by 4.0 license.

Satralizumab-mwge (Enspryng, Genentech, South San Francisco, CA, USA) is an anti-IL-6 R mAb approved for the treatment of NMOSD in adult patients who are AQP4-Ab positive (Figure 3). In 2020, satralizumab became the first subcutaneous NMOSD treatment [71]; it is administered subcutaneously at weeks 0, 2, and 4, followed by maintenance dosing every four weeks. The approval was supported by the results from the Phase 3 SAkuraStar and SAkuraSky studies. SAkuraStar investigated satralizumab monotherapy against placebo while SAkuraSky evaluated satralizumab added to baseline immunosuppressant therapy. The primary endpoint for both studies was the time to first protocol-defined relapse (PDR). Satralizumab monotherapy achieved a 30% PDR rate compared to 50% in the placebo group (p = 0.02) [72], while satralizumab added to stable immunosuppressant treatment revealed a PDR of 20% compared to 43% in the placebo group [73]. Satralizumab was well tolerated in these studies, with common side effects including nasopharyngitis, headache, upper respiratory infections, gastritis, rash, joint pain, and fatigue. Rates of serious adverse events did not differ between groups. These studies established satralizumab as a potential valuable treatment option for patients with NMOSD.

#### 3.3. Complement inhibitors

The complement system, an intricate network of more than 50 proteins, plays a vital role in innate immunity, helping to maintain tissue homeostasis and conduct immune surveillance (Figure 4). The system acts as the frontline defense against pathogens through direct cell lysis and enhancing antibody-mediated adaptive immunity. Activation of the complement cascade generates effector molecules that achieve three main goals: (1) opsonization of pathogens for phagocytosis, (2) production of anaphylatoxins that increase vascular

permeability and attract immune cells, and (3) cell lysis through targeted membrane damage. These effects are tightly controlled by endogenous inhibitory enzymes to avoid damage to host tissues [75].

Three distinct complement system pathways exist based on their method of activation: the classical, lectin, and alternative pathways [76]. The classical pathway is activated when complement component 1q (C1q) binds the Fc region of immunoglobulins within antibody-antigen complexes on the surfaces of pathogens [77,78], while the lectin pathway is activated by specific carbohydrate patterns on microbial surfaces [79]. Both pathways lead to the downstream formation of C3-convertase, the first major enzyme in the cascade and a key regulatory target involved in all three pathways, which cleaves C3 into C3a and C3b in plasma. C3a acts as an anaphylatoxin to recruit and activate effector cells of the innate immune system [80]. Meanwhile, C3b is released to deposit on local cellular surfaces and acts as an opsonin to coat cell surfaces and mark them for phagocytosis [81]. Host cells feature regulatory proteins which prevent binding of C3b, whereas pathogens lack such regulatory proteins.

Membrane-bound C3b advances the complement cascade by interacting with additional C3-convertase to form C5-convertase on the cell surface, which cleaves C5 into C5a and C5b fragments. Similar to C3a, C5a functions as an anaphylatoxin [80], while C5b binds to C6, C7, C8, and C9 to assemble the pore-forming membrane attack complex (MAC) on the cell surface. MAC causes lysis by disrupting the target cell membrane, and can additionally elicit further localized inflammatory responses, amplifying the immune reaction and contributing to pathogen clearance [82].

In the alternative pathway, activation occurs continuously at low levels in plasma, necessitating constant inhibition by endogenous regulatory proteins on host cell surfaces to

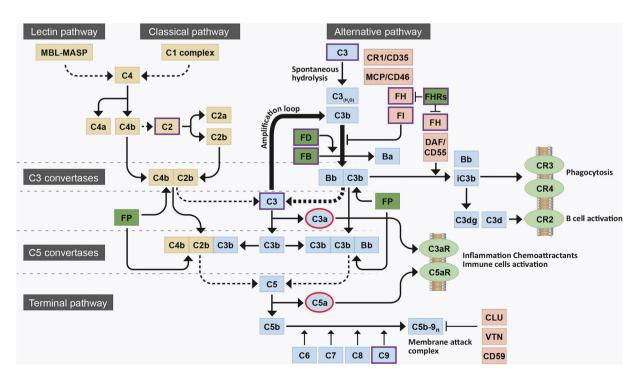



Figure 4. Overview of the complement system and its activation pathway. Reproduced from [74], © 2021 Armento et al., licensed under the CC by 4.0 license.

prevent local tissue damage [83]. The alternative pathway is initiated by spontaneous, slow hydrolysis of C3 into its active C3a and C3b fragments. Soluble C3b binds with soluble complement factor B (CFB) to form C3bB which is subsequently cleaved by CFD to produce the soluble alternative-pathway C3-convertase. This enzyme cleaves additional C3, creating a self-amplifying loop that generates more C3b fragments. On cell surfaces, C3b fragments similarly interact with CFB and CFD to form membrane-bound C3-convertase. This enzyme binds additional C3b to produce membrane-bound C5-convertase, paralleling the activation observed in the classical and lectin pathways and propelling the cascade downstream to form MAC and other immune responses in a similar manner as described previously.

The amplification loop of the alternative pathway, if not properly regulated, would rapidly upregulate complement cascade activity [84,85]. To mitigate the risk of excessive immune response and potential local tissue damage, this amplification loop must be tightly regulated by the endogenous inhibitory enzymes CFH and CFI [86]. CFH is expressed exclusively on host cell surfaces and works together with CFI to degrade C3-convertase and inactivate C3b on host cell surfaces. This regulatory mechanism suppresses the amplification loop of the alternative pathway, effectively limiting complement activation and protecting host tissues from collateral

Eculizumab (Soliris, Alexion Pharmaceuticals, Boston, MA, U.S.A.) is a complement inhibitor approved for use in adult patients with refractory MG who are positive for anti-AChR Ab with AQP4-Ab-positive and adult patients NMOSD. Eculizumab is a recombinant humanized monoclonal IgG2/4<sub>K</sub> antibody that binds to human C5 complement protein, inhibiting its cleavage to C5a and C5b and preventing the generation MAC, thereby protecting AChR from immunemediated damage [87]. The FDA approved eculizumab for adult patients with refractory MG who are positive for anti-AChR antibodies in 2017 [88]. A Phase 2 study demonstrated that eculizumab produced clinically meaningful improvements in muscle strength relative to placebo in patients with anti-AChR-Ab positive refractory MG [89]. The Phase 3 REGAIN study evaluated the safety and efficacy of eculizumab in patients with refractory gMG. All patients were required to have previously failed treatment with at least two immunosuppressive agents or failed treatment with at least one immunosuppressive agent and required chronic plasma exchange or IVIG. The primary efficacy endpoint of change from baseline in MG-Activities of Daily Living Profile (MG-ADL) total score at week 26 and the first secondary endpoint of change from baseline in Quantitative MG (QMG) total score, a physician-administered assessment of MG clinical severity, at week 26 were assessed using a worst-rank score analysis. Eculizumab failed to reach statistical significance (p = 0.07) for the primary efficacy endpoint; however, fewer patients in the eculizumab arm had MG exacerbation and required rescue therapy [90]. Furthermore, a post hoc worstrank ANCOVA of the primary endpoint showed a significant benefit with eculizumab over placebo (p = 0.02). In the extension phase of the REGAIN trial, improvements with eculizumab in activities of daily living, muscle strength, functional ability, and quality of life were maintained through three years [91]. Additionally, more eculizumab-treated patients achieved 'minimal symptom expression' versus placebo at week 26 (p < 0.01), which was sustained through three years [92]. IV eculizumab was generally well tolerated in patients with refractory gMG, with a tolerability profile generally similar to that seen previously in other indications [90]. These results supported eculizumab's FDA approval for this indication, which represented the first complement inhibitor to be approved for use in these patients [87]. It is administered intravenously weekly at weeks 0-5, followed by maintenance every two weeks.

In 2019, eculizumab was approved for use in AQP4-Abpositive NMOSD [93]. Approximately three quarters (73%) of all patients with NMOSD have AQP4 auto-antibodies which activate the complement cascade, leading to demyelination and to the death of neurons, predominantly in the spinal cord and optic nerve [94–96]. The efficacy of eculizumab in the treatment of AQP4-IgG-seropositive NMOSD was established in the Phase 3 PREVENT study (Prevention of Relapses in Neuromyelitis Optica) [97]. Subjects enrolled in the trial were required to have a history of at least two relapses during the previous 12 months or three relapses during the previous 24 months (with at least one relapse in the previous 12 months) and an Expanded Disability Status Scale (EDSS) score of seven or less. Eculizumab significantly reduced the risk of the primary endpoint of adjudicated relapse relative to placebo, with 3% of patients in the eculizumab group experiencing relapses compared to 43% of patients in the placebo group (p < 0.01) [97]. Eculizumab has demonstrated safety in the short- and longer-term in patients with AQP4-IgG-seropositive NMOSD [98]. The most common treatment emergent adverse events (TEAE) were upper respiratory tract infection, headache, nasopharyngitis, nausea, diarrhea, urinary tract infection, limb pain, cough, and vomiting [97]. An increased risk of Neisseria meningiditis infections may accompany eculizumab use and vaccination is advised prior to use of the medication. Most TEAEs were mild to moderate in severity and considered to be unrelated to the study medication. Real-world evidence has demonstrated safety and effectiveness results consistent with those from the PREVENT trial in patients with AQP4-Abpositive NMOSD [99].

Ravulizumab-cwvz (Ultomiris, Alexion Pharmaceuticals, Boston, MA, U.S.A.) is a long-acting C5 inhibitor mAb approved for use in anti-AChR Ab-positive gMG and AQP4-Ab-positive NMOSD. Like eculizumab, ravulizumab is administered intravenously but offers the advantage of less frequent dosing. Two weeks after an initial loading dose, maintenance doses are given every eight weeks, significantly reducing the frequency of infusions. This extended dosing interval not only improves patient convenience and adherence but also reduces the healthcare burden associated with frequent clinic visits. Ravulizumab's extended half-life allows for sustained complement inhibition, providing effective disease control with fewer treatments. Ravulizumab was approved by the FDA in 2022 for gMG following the results of the Phase 3 CHAMPION-MG trial [100]. In the randomized, double-blind, placebo-controlled study, ravulizumab demonstrated superiority over placebo in the primary endpoint of change from

baseline in the MG-ADL and clinician-reported QMG total scores at week 26 [100]. There were also no notable differences in adverse events observed between ravulizumab and placebo. Final results from the open-label extension phase of the study revealed maintenance of improvements in MG-ADL and QMG scores through week 164, supporting the sustained efficacy and long-term safety of ravulizumab in anti-AChR Abpositive gMG [101].

More recently in 2024, ravulizumab was approved for use in AQP4-Ab-positive NMOSD following the results of the Phase 3 CHAMPION-NMOSD trial [102]. This study compared ravulizumab every eight weeks to an external comparator in the placebo group of the eculizumab Phase 3 PREVENT trial due to the potential long-term functional impact of NMOSD and available effective treatment Ravulizumab met the primary endpoint, with no patients sustaining an adjudicated relapse compared to 20 patients with adjudicated relapses in the placebo group of the PREVENT trial [102]. Most TEAEs were mild to moderate, and although two patients taking ravulizumab experienced meningococcal infections, both recovered without sequelae. A long-term extension period of the CHAMPION-NMOSD study is ongoing similar to the CHAMPION-MG trial.

Zilucoplan (Zilbrysg, UCB, Brussels, Belgium) a subcutaneous C5 inhibitor administered daily and approved for use in anti-AChR Ab-positive gMG. Zilucoplan is a small, synthetic peptide that binds to C5, inhibiting its cleavage into C5a and C5b, and thereby preventing the formation of MAC. The typical dosing regimen is once daily, which allows for steady-state inhibition of the complement system. The ability to self-administer zilucoplan at home enhances its convenience and may improve patient adherence compared to therapies requiring IV infusions. Zilucoplan's subcutaneous administration also offers flexibility in dosing schedules, making it a versatile option in the long-term management of MG. The Phase 3 RAISE trial was a multicenter, randomized, double-blind, placebo-controlled trial comparing the efficacy of zilucoplan to placebo in patients with anti-AChR Ab-positive gMG [103]. Zilucoplan achieved significant improvements in both MG-ADL and QMG total scores with a favorable adverse event profile, which were instrumental in its FDA approval [103]. Interim results from the RAISE-XT open-label extension study revealed a favorable long-term safety profile, good tolerability, and sustained efficacy of zilucoplan through week 60 with consistent benefits in a broad anti-AChR Ab-positive gMG population [104]. Due to the mechanism of action, these complement inhibitors increase the risk of meningococcal and encapsulated bacterial infection, and consequently, the prescribing information contains a black box warning advising meningococcal vaccination prior to use.

#### 3.4. Anti-FcRn therapies

The neonatal Fc receptor (FcRn) plays a critical role in protecting immunoglobulin G (IgG) from degradation, thereby extending its half-life in circulation. FcRn is widely expressed in endothelial, epithelial, and hematopoietic cells and binds to IgG in acidic environments (e.g. intracellular endosomes), shielding IgG from subsequent lysosomal degradation [105]. The endosome is then shuttled back to the cell surface where, at physiological pH, IgG dissociates from FcRn and is recycled back into the bloodstream. In healthy individuals, this process maintains adequate levels of circulating IgG to ensure longterm immunity.

IgG autoantibodies constitute the underlying pathophysiology of several autoimmune disorders, including MG. Anti-FcRn therapies work by inhibiting the interaction between IgG and FcRn, leading to accelerated degradation of IgG antibodies, including pathogenic IgG autoantibodies. This approach has shown promise in reducing disease severity in patients with MG [105]. FcRn blockade with selective targeting of IgG has proven successful and resulted in the FDA approval of FcRn inhibitors for the treatment of adults with gMG who are anti-AChR Ab-positive (efgartigimod) and who are anti-AChR or anti-MuSK Ab-positive (rozanolixizumab). There are additional FcRn inhibitors in clinical development for gMG and other IgG autoantibody-mediated autoimmune disorders.

Rozanolixizumab-noli (Rystiggo, UCB, Brussels, Belgium) is a humanized mAb that targets FcRn and is approved for use in gMG patients who are anti-AChR or anti-MuSK Ab-positive. By binding to FcRn, rozanolixizumab prevents the receptor from recycling IgG, resulting in a reduction of circulating pathogenic IgG autoantibodies, including those against AChR and MuSK. Rozanolixizumab is administered as a subcutaneous injection in cycles once weekly for six weeks, with the duration of treatment tailored to the patient's clinical response and disease severity [106]. The subcutaneous route offers convenience and may be associated with fewer side effects compared to IV administration, enhancing patient adherence to therapy. The FDA approval of rozanolixizumab for the treatment of gMG in June 2023 followed the results of the Phase 3 MycarinG trial [107]. This randomized, double-blind, placebocontrolled trial compared once weekly subcutaneous rozanolixizumab 7 mg/kg and rozanolixizumab 10 mg/kg to placebo. The study found significantly greater reductions in MG-ADL and QMG total scores from baseline to day 43 in the rozanolixizumab groups relative to placebo. Both doses were also generally well tolerated, with the most frequent TEAE being headache, diarrhea, and pyrexia [107]. The open-label extension MG0004 trial including patients from the MycarinG study demonstrated maintenance of MG-ADL and QMG improvewith chronic, weekly rozanolixizumab [108]. Rozanolixizumab represents the only FDA-approved treatment in adults for both anti-AChR and anti-MuSK Ab-positive gMG, the two most common subtypes of gMG.

Efgartigimod alfa (Vyvgart, Argenx, Rotterdam, the Netherlands) was the first FDA-approved anti-FcRn therapy for the treatment of anti-AChR Ab-positive gMG. It prevents recycling of IgG, but unlike rozanolixizumab, efgartigimod is a Fc fragment of IgG<sub>1</sub> that binds to FcRn, instead of a full mAb. Efgartigimod is administered intravenously as an infusion over one hour, with a typical dosing regimen of once weekly for four weeks, followed by a treatment-free period. The cycle may be repeated based on the patient's response and clinical need. The IV administration allows for a higher bioavailability of the drug, which may contribute to its efficacy in rapidly reducing antibody levels. Efgartigimod was approved by the FDA in December 2021 following the results of the Phase 3

ADAPT trial [109]. This study was a randomized, double-blind, placebo-controlled study, in which efgartigimod was shown to provide rapid and sustained improvements in MG-ADL scores, with a favorable safety profile, leading to its approval [109]. A recent prospective, real-world study compared the clinical efficacy, safety, and biological effects of efgartigimod and ravulizumab in anti-AChR Ab-positive gMG [110]. Both biologics demonstrated similar moderate short-term improvement in MG-ADL scores, while only ravulizumab achieved a slight decrease in QMG scores from baseline levels. However, after adjusting for age and sex, both therapies performed similarly [110]. Both ravulizumab and efgartigimod were also well tolerated with no serious adverse events reported.

Efgartigimod alfa and hyaluronidase-gyfc (Vyvgart Hytrulo, Argenx, Rotterdam, the Netherlands), a combination anti-FcRn inhibitor and endoglycosidase combination, is a subcutaneous formulation that has been approved for the treatment of adult patients with anti-AChR Ab-positive gMG and chronic inflammatory demyelinating polyneuropathy. It is administered in cycles of once weekly injections for four weeks. The addition of recombinant human hyaluronidase PH20 (rHuPH20) facilitates the subcutaneous delivery of efgartigimod as a single injection by a healthcare professional over 30 to 90 seconds. The approval of efgartigimod and hyaluronidase was based on the results of the Phase 3 ADAPT-SC trial which revealed noninferiority in total IgG reduction between subcutaneous efgartigimod PH20 1000 mg and IV efgartigimod 10 mg/kg during the study period [111]. Subcutaneous efgartigimod PH20 also performed similarly to IV efgartigimod in improvements in MG-ADL and QMG total scores. Furthermore, continued treatment cycles of subcutaneous efgartigimod PH20 demonstrated long-term safety and consistent improvements in MG-ADL total score [111], offering patients potential improved treatment burden and flexibility.

#### 3.5. B-cell depletion therapies

B cells play a critical role in the pathophysiology of inflammatory conditions such as MS and NMOSD due to their involvement in the immune response, including antigen presentation, cytokine production, antibody secretion, and activation of T cells [112]. mAbs targeting CD20, a B cell surface marker, have demonstrated efficacy in reducing disease activity by depleting B cells responsible for the production of pathogenic autoantibodies [113].

Rituximab (Rituxan, Genentech, South San Francisco, CA, U.S.A.) is a mAb targeting CD20 that became the first anti-CD20 therapy approved by the FDA in 1997 for the treatment of non-Hodgkin's lymphoma. Rituximab has been increasingly used in autoimmune diseases and has gained further approval for use in rheumatoid arthritis, granulomatosis with polyangiimicroscopic polyangiitis, and pemphigus vulgaris. Although not FDA approved, rituximab has demonstrated efficacy and promise when used off-label for the management of NMOSD [114,115], MOGAD [116–118], and MS [119–121].

Ocrelizumab (Ocrevus, Genentech, South San Francisco, CA, U.S.A.) is another mAb that selectively targets CD20-positive B cells and is approved for use in relapsing MS and primary progressive MS (PPMS). It is administered intravenously at weeks 0 and 2 then every six months. Although the precise mechanism by which ocrelizumab exerts its therapeutic effects in MS is unknown, it leads to destruction of B cells, modulating immune response. The Phase 3 OPERA I and OPERA II studies evaluated the safety and efficacy of IV ocrelizumab 600 mg every six months compared with subcutaneous interferon beta-1a 44 mcg three times per week for relapsing MS. The primary endpoint of annualized relapse rate was 46% and 47% lower with ocrelizumab than with interferon beta-1a in trials I and II, respectively (p < 0.01 for both) [122]. Furthermore, ocrelizumab achieved a 40% relative risk reduction in confirmed disability progression (CDP), as measured by the EDSS, sustained for 12 weeks compared with interferon beta-1a in a pooled analysis of OPERA I and OPERA II. Meanwhile, the Phase 3 ORATORIO study evaluated the efficacy and safety of ocrelizumab 600 mg every six months compared with placebo for PPMS. The primary end point of CDP at 12 weeks in a time-to-event analysis showed a 24% relative risk reduction with ocrelizumab compared to placebo [123]. Throughout the three Phase 3 trials, common adverse events included infusion reactions and upper respiratory tract infections, which were mostly mild to moderate in severity [122,123]. The results of these studies are supported by numerous real-world studies which demonstrated similar reductions in relapse rate and disease progression rates, including in studies with more diverse patient populations not well represented in the pivotal trials [124]. A subcutaneous combination of ocrelizumab with hyaluronidase-ocsq is also approved for use in relapsing MS and PPMS, dosed every six months (Ocrevus Zunovo, Genentech, South San Francisco, CA, U.S.A.). Pretreatment with oral corticosteroid and antihistamine at least 30 minutes prior to each injection is indicated.

Ofatumumab (Kesimpta, Novartis Pharmaceuticals, Basel, Switzerland) is a fully human anti-CD20 mAb that can be selfadministered by patients and is approved in several countries worldwide for the treatment of relapsing forms of MS. It is administered at weeks 0, 1, and 2, then monthly starting at week 4. Subcutaneous ofatumumab became the first B-celltargeting therapy intended for self-administration at home. Three Phase 2 trials, including APLIOS, APOLITOS, and MIRROR, revealed subcutaneous of atumumab achieved significant reductions in new brain lesion activity (from baseline or versus placebo), as measured by MRI, in patients with relapsing forms of MS [125-127]. In two identical Phase 3 ASCLEPIOS I and II trials in adults with relapsing forms of MS, subcutaneous of atumumab 20 mg once monthly was compared to 14 mg once daily oral teriflunomide (selectively and reversibly inhibits dihydro-orotate dehydrogenase, a key enzyme in the de novo pyrimidine synthesis pathway, leading to a reduction in proliferation of activated T and B lymphocytes). Ofatumumab was more effective in reducing the annualized relapse rate, as well as reducing MRI-detected lesion activity and limiting worsening of disability for up to 30 months [128]. Ofatumumab was well tolerated in patients with relapsing forms of MS with a similar rate of adverse events to oral teriflunomide [128]. The most common adverse events reported were injection-related reactions, nasopharyngitis, headache, injection-site reactions, upper respiratory tract

infections and urinary tract infections [129]. The Phase 3 ALITHIOS trial was a long-term safety study including patients from the ASCLEPIOS I and II, APLIOS, or APOLITOS trials. This study found ofatumumab was well tolerated, with no new safety risks identified through 3.5 years of exposure [130].

Ublituximab-xiiy (Briumvi, TG Therapeutics, Morrisville, NC, U.S.A.) is a CD20-directed mAb that is administered intravenously at weeks 0 and 2, and then every six months. Ublituximab targets a unique epitope on CD20-expressing B cells and is uniquely designed to lack certain sugar molecules normally expressed on the antibody to allow for efficient B-cell depletion at low doses. Ublituximab became FDA approved for use in relapsing forms of MS following the results of the Phase 3 ULTIMATE I & II trials [131]. These studies revealed ublituximab reached the primary endpoint of superiority over oral teriflunomide in significantly reducing the annualized relapse rate, in addition to the number of T1 Gdenhancing lesions and the number of new or enlarging T2 lesions. Infusion-related reactions occurred in 47.7% of the participants in the ublituximab group, while serious infections occurred in 5.0% in the ublituximab group compared to 2.9% in the teriflunomide group [131]. Following its approval, ublituximab became the first and only anti-CD20 mAb approved for patients with relapsing MS that can be administered in a one-hour infusion following the starting dose.

Inebilizumab-cdon (Uplizna, Amgen, Thousand Oaks, CA, U.S.A.) is a recombinant humanized kappa IgG<sub>1</sub> mAb that targets and depletes CD19-expressing B cells. In 2020, the FDA approved inebilizumab for the treatment of adult patients with AQP4-Ab-positive NMOSD as a twice-a-year maintenance regimen following initial doses [132]. This approval followed the results from the pivotal N-MOmentum trial, the largest study ever conducted in a real-world spectrum of adults with NMOSD [133]. This Phase 2/3 study compared 300 mg IV inebilizumab to placebo with the primary endpoint of time to onset of an NMOSD attack. The randomized controlled period was ultimately stopped before complete enrollment due to clear demonstration of efficacy. 12% of participants receiving inebilizumab had an attack compared to 39% of participants receiving placebo (hazard ratio 0.272, 95% CI 0.150-0.496, p < 0.01). Furthermore, inebilizumab demonstrated statistically significant benefits in key secondary endpoints, including reductions in NMOSD-related hospitalizations [133]. Inebilizumab also demonstrated a favorable safety and tolerability profile. A post hoc analysis performed in participants receiving inebilizumab for over four years in the randomized controlled period and open-label extension of the N-MOmentum study found the efficacy of inebilizumab may be enhanced after the first year of treatment [134].

# 3.6. T-cell modulation agents

T-cell modulating agents target the T cells involved in inflammatory and autoimmune processes and have shown potential in the treatment of numerous autoimmune neuro-ophthalmic

Natalizumab (Tysabri, Biogen, Cambridge, MA, U.S.A.) is a recombinant humanized anti-α4-integrin antibody for the treatment of MS (Figure 5). Integrin inhibition inhibits T-cell migration into the CNS to prevent optic nerve inflammation through the limitation of T cell and vascular endothelium interaction. Natalizumab has demonstrated an ability to reduce disability progression and clinical relapse rates in MS [136-138]. The AFFIRM (natalizumab monotherapy) and SENTINEL (natalizumab and interferon beta-1a) trials demonstrated a significant reduction in the risk of clinically significant visual loss, defined as two-line worsening of lowcontrast visual acuity over 12 weeks, by 35% (p < 0.01) and 28% (p = 0.04), respectively [139]. Furthermore, the cumulative probabilities of sustained visual improvement were greater in the natalizumab group by 57% for 2.5% contrast (p = 0.01) and 39% for 1.25% contrast (p = 0.01) [140]. These benefits of natalizumab therapy, however, must be weighed against the potential adverse events. The risk of an uncommon but serious adverse event, progressive multifocal leukoencephalopathy, led to the drug's withdrawal from the market in 2006, although it was subsequently reintroduced later in 2006 after considering its clinical benefits over such risks [141,142]. The US prescribing information contains a black box warning regarding PML. The most common adverse events include infusion-related symptoms, infections, arthralgias, gastroenteritis, depression, and rash [52,137].

Fingolimod (FTY720, Gilenya, Novartis Pharmaceuticals, Basel, Switzerland) is a sphingosine 1-phosphate receptor modulator approved for the treatment of relapsing forms of MS. T-cell-mediated demyelination of the CNS is involved in the pathophysiology of MS. Fingolimod seguesters T cells in lymph nodes by preventing their egress, leading to a reduced infiltration of lymphocytes into the CNS. Preclinical studies also revealed fingolimod may have neuroprotective capabilities due to modulatory effects on neural sphingosine 1-phosphate receptors [143]. The Phase 3 TRANSFORMS (Trial Assessing Injectable Interferon vs. FTY720 Oral in RRMS) trial revealed that fingolimod decreased the relapse rate and disease activity on MRI, as compared to once-weekly, intramuscular injection of interferon beta-1a 30 µg [144]. Furthermore, the Phase 3 FREEDOMS (FTY720 Research Evaluating Effects of Daily Oral therapy in Multiple Sclerosis) trial revealed that oral fingolimod improved the relapse rate, the risk of disability progression, and end points on MRI compared to placebo [145]. These encouraging results, however, need to be weighed against the possible long-term adverse events, including bradycardia and atrioventricular conduction, elevated liver-enzyme levels, and mild hypertension. Macular edema is a recognized ocular adverse event with fingolimod that may cause blurred vision and can be differentiated from MS-ON by clinical exam, optical coherence tomography, and absence of pain.

T-cell modulation agents represent a promising therapeutic strategy in the management of neuro-ophthalmic disorders with an autoimmune or neuroinflammatory etiology. By targeting specific T-cell pathways, these agents help reduce inflammation, prevent tissue damage, and improve longterm visual outcomes. However, their use is often part of a broader immunomodulatory approach, and ongoing

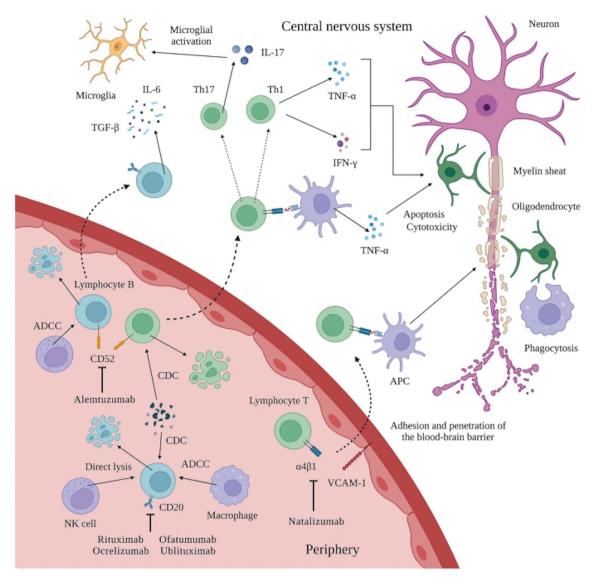



Figure 5. Mechanism of action of mAbs in the treatment of MS, including rituximab, ocrelizumab, ofatumumab, ublituximab, alemtuzumab, and natalizumab. Reproduced from [135], © 2022 Krajnc et al., licensed under the CC by 4.0 license.

research is essential to determine optimal treatment protocols and safety profiles for these agents.

## 4. Safety and adverse effects

The advent of biologic therapies has dramatically improved the treatment options for patients with autoimmune neuroophthalmic disorders by offering targeted effective treatment approaches while avoiding many of the adverse effects associated with nontargeted therapies such as corticosteroids. While biologics can trigger immune responses and infusion-related reactions, these effects are generally manageable and predictable. Anti-drug antibodies may develop, potentially affecting therapeutic efficacy, but infusion reactions can be effectively managed through premedication protocols and optimized infusion rates. This safety profile contrasts favorably with traditional corticosteroid therapy, which is associated with numerous systemic complications hyperglycemia, including hypertension,

pancreatitis, and various hematologic, immunologic, and neuropsychologic effects, as well as more serious sequelae such as osteoporosis, aseptic joint necrosis, and adrenal insufficiency.

Long-term safety data from extensive clinical experience and pharmacovigilance programs have reinforced the favorable risk-benefit profile of biologic therapies. While these agents require monitoring for opportunistic infections, particularly with complement inhibitors like eculizumab, the risk can be effectively managed through preventive measures such as vaccination protocols. Newer agents will require ongoing monitoring to fully characterize their long-term safety profiles.

#### 5. Challenges and future directions

The advancement of biologic therapies for autoimmune neuro-ophthalmic disorders faces several significant challenges, particularly in patient stratification and treatment personalization. Current approaches often lack precise biomarkers

to predict treatment response, leading to potential inefficiencies in therapy selection. The heterogeneity of autoimmune neuro-ophthalmic disorders, combined with variable patient responses to biologics, underscores the need for more sophisticated predictive models incorporating genetic, immunological, and clinical parameters.

Novel biologic targets and innovative delivery methods represent promising avenues for advancement in the field. Emerging research focuses on identifying new molecular pathways and developing more selective therapeutic approaches, including dual-targeting antibodies and tissue-specific delivery systems. Integration of biologics into existing treatment algorithms requires careful consideration of timing, sequence, and combination strategies with conventional therapies. Healthcare policy and accessibility remain significant challenges, with issues of cost, insurance coverage, and healthcare infrastructure affecting treatment availability. The development of biosimilars may help address some accessibility concerns, though regulatory frameworks and clinical validation processes need careful consideration. Furthermore, cost reduction strategies in the use of biologic therapies may include therapeutic drug monitoring, ensuring patients receive the minimum effective dose, and establishing evidence-based dose reduction and tapering protocols for patients in remission or with stable disease. These challenges highlight the importance of continued research, collaboration between healthcare stakeholders, and policy development to ensure equitable access to these transformative therapies.

#### 6. Conclusion

Biologics represent an evolving and promising class of treatments for a variety of autoimmune neuro-ophthalmic disorders. Clinical trials and observational studies have demonstrated their potential to target specific immune pathways, reduce inflammation, and protect or restore vision in patients with conditions like ON, NMOSD, MG, GCA, and TED. These therapies have not only improved clinical outcomes but have also enhanced our understanding of disease pathophysiology. The ability to selectively target specific molecular pathways has led to more precise interventions with improved safety profiles compared to traditional broad-spectrum immunosuppression. Ongoing research into novel therapeutic targets, improved delivery systems, and biomarker development suggests potential for even more effective and personalized treatment approaches. The evolution of biosimilars and continued refinement of existing therapies may help address current challenges of cost and accessibility.

#### 7. Expert opinion

The impact of biologic therapies in autoimmune neuroophthalmic disorders represents one of the most significant therapeutic advances in recent decades, fundamentally changing treatment paradigms and patient outcomes. The ability to specifically target disease pathways has not only improved treatment efficacy but has also enhanced our understanding of disease mechanisms, creating a virtuous cycle of discovery and therapeutic advancement.

The translation of current advances into clinical practice still faces several practical challenges. While the efficacy of biologics is well-documented, their high cost and complex administration requirements often create barriers to widespread adoption. Healthcare systems must develop infrastructure for proper patient selection, monitoring, and management of potential complications. The development of validated biomarkers for patient stratification and treatment response prediction remains a critical unmet need. Current limitations in predicting individual patient responses lead to potentially inefficient use of these expensive therapies. Additionally, the long-term implications of biological immune modulation require continued surveillance and data collection.

Technical improvements in several key areas could significantly advance the field. Novel delivery systems, particularly those allowing for self-administration and/or extended dosing intervals, could improve treatment adherence and reduce healthcare resource utilization. Improved understanding of the relationship between specific molecular targets and clinical outcomes could lead to more personalized treatment approaches.

Research in autoimmune neuro-ophthalmic disorders shows tremendous promise for continued advancement. Rather than approaching a definitive endpoint, the field appears to be entering an era of accelerated discovery. The identification of new therapeutic targets, development of multi-specific antibodies, and potential for combination therapies suggest numerous avenues for future investigation. The integration of artificial intelligence and machine learning tools for patient stratification and outcome prediction represents another promising frontier.

Looking ahead five years, several key developments are likely to reshape standard clinical practice. Formulations and delivery systems will continue to improve with further progress in the development of subcutaneous auto-injectors, that facilitate home-based self-administration, reducing the treatment burden associated with frequent trips to the IV infusion center. We anticipate the approval of several new biologics currently in late-stage development, particularly for conditions like MG and NMOSD. The availability of biosimilars for current biologics may improve treatment accessibility, though careful validation of therapeutic equivalence will be essential. Treatment algorithms will likely become more sophisticated, incorporating biomarker-driven decision-making and potentially utilizing combination approaches with both biological and conventional therapies.

The field will likely evolve toward more personalized treatment approaches, supported by improved understanding of disease mechanisms and better predictive tools. We may see the emergence of 'precision neuro-ophthalmology,' where treatment selection is guided by individual patient characteristics including genetic, immunological, and clinical parameters. This evolution will require significant investment in research infrastructure and data collection systems but could substantially improve treatment outcomes while optimizing resource utilization. The greatest challenge will be managing the growing complexity of treatment options while ensuring equitable access to these transformative therapies. Success will require continued collaboration between clinicians, researchers, industry partners, and healthcare systems to optimize the development and implementation of these important therapeutic advances.



# **Funding**

This paper was not funded.

#### **Declaration of interest**

T Ciulla declares consultancy and stock options for Clearside Bio, consultancy and stock options for Nanoscope, consultancy for Ocuphire/Opus and consultancy, stock options, and employment through to Feb 2025 for Viridian Therapeutics. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

#### Reviewer disclosure

A reviewer on this manuscript has disclosed that they have acted as an advisor for Horizon/Amgen and Catalyst Pharmaceuticals and have performed contracted research for Argenx. Peer reviewers on this manuscript have no other relevant financial relationships or otherwise to disclose.

#### **Author contributions**

All authors have made substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work. All authors drafted and/or reviewed the work critically for important intellectual content. All author gave final approval of the version to be published; All authors agree to be accountable for all aspects of the work in ensuring that guestions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

#### **ORCID**

Lucas W. Rowe (b) http://orcid.org/0000-0002-1225-154X Thomas A. Ciulla (b) http://orcid.org/0000-0001-5557-6777

## References

Papers of special note have been highlighted as either of interest (•) or of considerable interest (..) to readers.

- 1. Bennett JL, Costello F, Chen JJ, et al. Optic neuritis and autoimmune optic neuropathies: advances in diagnosis and treatment. Lancet Neurol. 2023;22(1):89-100. doi: 10.1016/S1474-4422(22) 00187-9
- 2. Burton EV, Greenberg BM, Frohman EM. Optic neuritis: a mechanistic view. Pathophysiol. 2011;18(1):81-92. doi: 10.1016/j. pathophys.2010.04.009
- 3. Chrousos GA, Kattah JC, Beck RW, et al. Side effects of glucocorticoid treatment. Experience of the optic neuritis treatment trial. JAMA. 1993;269(16):2110-2112. doi: 10.1001/jama.1993.03500160080036
- 4. Optic Neuritis Study Group. Multiple sclerosis risk after optic neuritis: final optic neuritis treatment trial follow-up. Arch Neurol. 2008;65(6):727-732. doi: 10.1001/archneur.65.6.727
- 5. Traugott U, Reinherz EL, Raine CS. Multiple sclerosis distribution of T cells, T cell subsets and la-positive macrophages in lesions of different ages. J Neuroimmunol. 1983;4(3):201-221. doi: 10.1016/ 0165-5728(83)90036-X
- 6. Khoy K, Mariotte D, Defer G, et al. Natalizumab in multiple sclerosis treatment: from biological effects to immune monitoring. Front Immunol. 2020;11:549842. doi: 10.3389/fimmu.2020.549842
- 7. Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99(1):21-78. doi: 10.1152/physrev.00050.2017
- 8. Liu R, Du S, Zhao L, et al. Autoreactive lymphocytes in multiple sclerosis: pathogenesis and treatment target. Front Immunol. 2022;13:996469. doi: 10.3389/fimmu.2022.996469

- 9. Hickman SJ, Toosy AT, Miszkiel KA, et al. Visual recovery following acute optic neuritis-a clinical, electrophysiological and magnetic resonance imaging study. J Neurol. 2004;251(8):996-1005. doi: 10. 1007/s00415-004-0477-1
- 10. Li Y, Xie P, Lv F, et al. Brain magnetic resonance imaging abnormalities in neuromyelitis optica. Acta Neurol Scand. 2008;118 (4):218-225. doi: 10.1111/j.1600-0404.2008.01012.x
- 11. Lennon VA, Wingerchuk DM, Kryzer TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106-2112. doi: 10.1016/S0140-6736(04) 17551-X
- 12. Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177. doi: 10.1212/WNL.000000000001729
- 13. Mandler RN, Davis LE, Jeffery DR, et al. Devic's neuromyelitis optica: a clinicopathological study of 8 patients. Ann Neurol. 1993;34 (2):162-168. doi: 10.1002/ana.410340211
- 14. Lucchinetti CF, Mandler RN, McGavern D, et al. A role for humoral mechanisms in the pathogenesis of devic's neuromyelitis optica. Brain. 2002;125(Pt 7):1450-1461.
- 15. Misu T, Fujihara K, Kakita A, et al. Loss of aquaporin 4 in lesions of neuromyelitis optica: distinction from multiple sclerosis. Brain. 2007:130(5):1224-1234. doi: 10.1093/brain/awm047
- 16. Parratt JDE, Prineas JW. Neuromyelitis optica: a demyelinating disease characterized by acute destruction and regeneration of perivascular astrocytes. Mult Scler. 2010;16(10):1156-1172. doi: 10. 1177/1352458510382324
- 17. Ciotti JR, Eby NS, Brier MR, et al. Central vein sign and other radiographic features distinguishing myelin oligodendrocyte glycoprotein antibody disease from multiple sclerosis and aquaporin-4 antibody-positive neuromyelitis optica. Mult Scler. 2022;28 (1):49-60. doi: 10.1177/13524585211007086
- 18. Höftberger R, Guo Y, Flanagan EP, et al. The pathology of central nervous system inflammatory demyelinating disease accompanying myelin oligodendrocyte glycoprotein autoantibody. Neuropathol. 2020;139(5):875-892. doi: 10.1007/s00401-020-02132-y
- 19. Corbali O, Chitnis T. Pathophysiology of myelin oligodendrocyte glycoprotein antibody disease. Front Neurol [Internet]. 2023 [cited 2025 Jan 14];14. doi: 10.3389/fneur.2023.1137998
- 20. Kaneko K, Sato DK, Nakashima I, et al. CSF cytokine profile in MOG-lgG+ neurological disease is similar to AQP4-lgG+ NMOSD but distinct from MS: a cross-sectional study and potential therapeutic implications. J Neurol Neurosurg Psychiatry. 2018;89 (9):927-936. doi: 10.1136/jnnp-2018-317969
- 21. Beck RW. The optic neuritis treatment trial. Implications for clinical practice. Optic neuritis study group. Arch Ophthalmol. 1992;110 (3):331-332. doi: 10.1001/archopht.1992.01080150029020
- 22. Gal RL, Vedula SS, Beck R. Corticosteroids for treating optic neuritis. Cochrane Database Sys Rev. 2015;2015(8):CD001430. doi: 10.1002/ 14651858.CD001430.pub4
- 23. Morrow SA, Fraser JA, Day C, et al. Effect of treating acute optic neuritis with bioequivalent oral vs intravenous corticosteroids: a randomized clinical trial. JAMA Neurol. 2018;75(6):690-696. doi: 10.1001/jamaneurol.2018.0024
- 24. Morrow MJ, Ko MW. Should oral corticosteroids be used to treat demyelinating optic neuritis? J Neuroophthalmol. 2017;37 (4):444-450. doi: 10.1097/WNO.000000000000555
- 25. Merle H, Olindo S, Jeannin S, et al. Treatment of optic neuritis by plasma exchange (add-on) in neuromyelitis optica. Arch Ophthalmol. 2012;130(7):858-862. doi: 10.1001/archophthalmol. 2012.1126
- 26. Akosman S. Li R. Asahi M. et al. Trends in plasma exchange use in optic neuritis hospitalizations in the United States. Ophthalmol. 2024;131(10):1207-1214. doi: 10.1016/j.ophtha.2024.03.020
- 27. Arnold AC. Pathogenesis of nonarteritic anterior ischemic optic neuropathy. J Neuroophthalmol. 2003;23(2):157-163. doi: 10. 1097/00041327-200306000-00012
- 28. Ischemic optic neuropathy decompression trial: twentyfour-month update. Arch Ophthalmol. 2000;118(6):793-798. doi: 10.1001/archopht.118.6.793



- 29. Hayreh SS, Joos KM, Podhajsky PA, et al. Systemic diseases associated with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. 1994;118(6):766–780. doi: 10.1016/S0002-9394(14) 72557-7
- 30. Jacobson DM, Vierkant RA, Belongia EA. Nonarteritic anterior ischemic optic neuropathy. A case-control study of potential risk factors. Arch Ophthalmol. 1997;115(11):1403-1407. doi: 10.1001/ archopht.1997.01100160573008
- 31. Hysa E, Casabella A, Gotelli E, et al. Polymyalgia rheumatica and giant cell arteritis induced by immune checkpoint inhibitors: a systematic literature review highlighting differences from the idiopathic forms. Autoimmun Rev. 2024;23(7-8):103589. doi: 10. 1016/j.autrev.2024.103589
- 32. Yu CW, Yau M, Mezey N, et al. Neuro-ophthalmic complications of immune checkpoint inhibitors: a systematic review. Eye Brain. 2020;12:139-167. doi: 10.2147/EB.S277760
- 33. Younger DS. Giant cell arteritis. Neurol Clin. 2019;37(2):335-344. doi: 10.1016/i.ncl.2019.01.008
- 34. Schmidt WA, Kraft HE, Vorpahl K, et al. Color duplex ultrasonography in the diagnosis of temporal arteritis. N Engl J Med. 1997;337 (19):1336-1342. doi: 10.1056/NEJM199711063371902
- 35. Howard JF. Myasthenia gravis: the role of complement at the neuromuscular junction. Ann NY Acad Sci. 2018;1412(1):113-128. doi: 10.1111/nyas.13522
- 36. Beekman R, Kuks JB, Oosterhuis HJ. Myasthenia gravis: diagnosis and follow-up of 100 consecutive patients. J Neurol. 1997;244 (2):112-118. doi: 10.1007/s004150050059
- 37. Costa J, Evangelista T, Conceição I, et al. Repetitive nerve stimulation in myasthenia gravis—relative sensitivity of different muscles. Clin Neurophysiol. 2004;115(12):2776-2782. doi: 10.1016/j.clinph. 2004.05.024
- 38. Rodríguez Cruz PM, Al-Hajjar M, Huda S, et al. Clinical features and diagnostic usefulness of antibodies to clustered acetylcholine receptors in the diagnosis of seronegative myasthenia gravis. JAMA Neurol. 2015;72(6):642-649. doi: 10.1001/jamaneurol.2015.0203
- 39. McConville J, Vincent A. Diseases of the neuromuscular junction. Curr Opin Pharmacol. 2002;2(3):296-301. doi: 10.1016/S1471-4892(02)00156-X
- 40. Narayanaswami P, Sanders DB, Wolfe G, et al. International consensus guidance for management of myasthenia gravis: 2020 Neurol. 2021;96(3):114-122. doi: 10.1212/WNL. 000000000011124
- 41. Huang Y-T, Chen Y-P, Lin W-C, et al. Immune checkpoint inhibitor-induced myasthenia gravis. Front Neurol. 2020;11:634. doi: 10.3389/fneur.2020.00634
- 42. Kumar R, Birinder SP, Gupta S, et al. Therapeutic plasma exchange in the treatment of myasthenia gravis. Indian J Crit Care Med. 2015;19(1):9-13. doi: 10.4103/0972-5229.148631
- 43. Melson AT, McClelland CM, Lee MS. Ocular myasthenia gravis: updates on an elusive target. Curr Opin Neurol. 2020;33(1):55-61. doi: 10.1097/WCO.0000000000000775
- 44. Gerding MN, van der Meer JW, Broenink M, et al. Association of thyrotrophin receptor antibodies with the clinical features of Graves' ophthalmopathy. Clin Endocrinol (Oxf). 2000;52(3):267–271.
- 45. Ludgate M, Crisp M, Lane C, et al. The thyrotropin receptor in thyroid eye disease. Thyroid. 1998;8(5):411-413. doi: 10.1089/thy. 1998.8.411
- 46. Krieger CC, Neumann S, Place RF, et al. Bidirectional TSH and IGF-1 receptor cross talk mediates stimulation of hyaluronan secretion by Graves' disease immunoglobins. J Clin Endocrinol Metab. 2015;100 (3):1071-1077. doi: 10.1210/jc.2014-3566
- 47. Beck EP, Sciacca L, Pandini G, et al. Measurement of IGF-1 receptor content in tissues and cell lines by radioimmunoassay (RIA) and ELISA Techniques. Methods Mol Med. 2001;39:485-492. doi: 10. 1385/1-59259-071-3:485
- 48. Tsui S, Naik V, Hoa N, et al. Evidence for an association between thyroid-stimulating hormone and insulin-like growth factor 1 receptors: a tale of two antigens implicated in graves' disease. J Immunol. 2008;181(6):4397-4405. doi: 10.4049/jimmunol.181.6. 4397

- 49. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of graves' disease and ophthalmopathy. Endocr Rev. 2003;24(6):802-835. doi: 10.1210/er.2002-0020
- 50. Bartalena L, Krassas GE, Wiersinga W, et al. Efficacy and safety of three different cumulative doses of intravenous methylprednisolone for moderate to severe and active graves' orbitopathy. J Clin Endocrinol Metab. 2012;97(12):4454-4463. doi: 10.1210/jc.2012-
- 51. Bartalena L, Kahaly GJ, Baldeschi L, et al. The 2021 European Group on Graves' orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves' orbitopathy. Eur J Endocrinol. 2021:185(4):G43-G67. doi: 10.1530/EJE-21-0479
- 52. Keehn CC, Yazdian A, Hunt PJ, et al. Monoclonal antibodies in neuro-ophthalmology. Saudi J Ophthalmol. 2024;38(1):13-24. doi: 10.4103/sjopt.sjopt\_256\_23
- 53. Tramontano D, Cushing GW, Moses AC, et al. Insulin-like growth factor-i stimulates the growth of rat thyroid cells in culture and synergizes the stimulation of DNA synthesis induced by tsh and graves'-lgG. Endocrinol. 1986;119(2):940-942. doi: 10.1210/endo-119-2-940
- 54. Smith TJ, Kahaly GJ, Ezra DG, et al. Teprotumumab for thyroid-associated ophthalmopathy. N Engl J Med. 2017;376 (18):1748-1761. doi: 10.1056/NEJMoa1614949

#### .. Key Phase 3 study results.

55. Douglas RS, Kahaly GJ, Patel A, et al. Teprotumumab for the treatment of active thyroid eye disease. N Engl J Med. 2020;382 (4):341-352. doi: 10.1056/NEJMoa1910434

#### .. Key Phase 3 study results.

- 56. Douglas RS, Kahaly GJ, Ugradar S, et al. Teprotumumab efficacy, safety, and durability in longer-duration thyroid eye disease and Re-treatment: OPTIC-X study. Ophthalmol. 2022;129(4):438-449. doi: 10.1016/j.ophtha.2021.10.017
- 57. Vasundhara. US FDA approves label update for Horizon's Tepezza TED drug [Internet]. Pharmaceutical Technology; 2023 [cited 2024 Nov 24]. Available from: https://www.pharmaceutical-technology. com/news/fda-horizon-tepezza-ted-drug/
- 58. Douglas RS, Couch S, Wester ST, et al. Efficacy and safety of teprotumumab in patients with thyroid eye disease of long duration and low disease activity. J Clin Endocrinol Metab. 2023;109 (1):25-35. doi: 10.1210/clinem/dgad637
- 59. Lin F, Yao Q, Yu B, et al. The efficacy and safety of teprotumumab in thyroid eye disease: evidence from randomized controlled trials. Int J Clin Pract. 2023;2023(1):1-9. doi: 10.1155/2023/6638089
- 60. Kahaly GJ, Subramanian PS, Conrad E, et al. Long-term efficacy of teprotumumab in thyroid eye disease: follow-up outcomes in three clinical trials. Thyroid. 2024;34(7):880-889. doi: 10.1089/thy.2023. 0656

#### · Study supporting the long-term efficacy of teprotumumab in thyroid eye disease.

- 61. Taga T, Kishimoto T. Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol. 1997;15(1):797-819. doi: 10.1146/ annurev.immunol.15.1.797
- 62. Lu Z, Wang Z, Zhang X-A, et al. Myokines May Be the answer to the beneficial immunomodulation of tailored exercise—A narrative review. Biomolecules. 2024;14(10):1205. doi: 10.3390/biom14101205
- 63. Wolf J, Rose-John S, Garbers C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine. 2014;70 (1):11-20. doi: 10.1016/j.cyto.2014.05.024
- 64. Mihara M, Hashizume M, Yoshida H, et al. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2012;122(4):143-159. doi: 10.1042/CS20110340
- 65. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127-148. doi: 10.1093/intimm/dxaa078
- 66. Kang S, Tanaka T, Kishimoto T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol. 2015;27(1):21-29. doi: 10.1093/ intimm/dxu081
- 67. Stone JH, Tuckwell K, Dimonaco S, et al. Trial of tocilizumab in giant-cell arteritis. N Engl J Med. 2017;377(4):317-328. doi: 10.1056/ NEJMoa1613849
- 68. Smolen JS, Beaulieu A, Rubbert-Roth A, et al. Effect of interleukin-6 receptor inhibition with tocilizumab in patients with rheumatoid



- arthritis (OPTION study): a double-blind, placebo-controlled, randomised trial. Lancet. 2008;371(9617):987-997. doi: 10.1016/S0140-6736(08)60453-5
- 69. Stone JH, Han J, Aringer M, et al. Long-term effect of tocilizumab in patients with giant cell arteritis: open-label extension phase of the Giant Cell Arteritis Actemra (GiACTA) trial. Lancet Rheumatol. 2021;3(5):e328-e336. doi: 10.1016/S2665-9913(21)00038-2
- 70. Huang T-L, Wang J-K, Chang P-Y, et al. Neuromyelitis optica spectrum disorder: from basic research to clinical perspectives. Int J Mol Sci. 2022;23(14):7908. doi: 10.3390/ijms23147908
- 71. Genentech: news features | FDA approves Genentech's treatment for neuromyelitis optica spectrum disorder (NMOSD) [Internet]. [cited 2024 Nov 27]. Available from: https://www.gene.com/ media/news-features/fda-approves-genentech-s-treatment-forneuromyelitis-optica-spectrum-disorder-nmosd
- 72. Traboulsee A, Greenberg BM, Bennett JL, et al. Safety and efficacy of satralizumab monotherapy in neuromyelitis optica spectrum disorder: a randomised, double-blind, multicentre, placebo-controlled phase 3 trial. Lancet Neurol. 2020;19(5):402-412. doi: 10.1016/S1474-4422(20)30078-8

#### .. Key Phase 3 study results.

- 73. Yamamura T, Kleiter I, Fujihara K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381 (22):2114-2124. doi: 10.1056/NEJMoa1901747
- 74. Armento A, Ueffing M, Clark SJ. The complement system in age-related macular degeneration. Cell Mol Life Sci. 2021;78 (10):4487-4505. doi: 10.1007/s00018-021-03796-9
- 75. Medzhitov R, Janeway CA. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296 (5566):298-300. doi: 10.1126/science.1068883
- 76. Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol. 2009;9(10):729-740. doi: 10.1038/nri2620
- 77. Reid KBM. Complement component C1g: historical perspective of a functionally versatile, and structurally unusual, serum protein. Front Immunol. 2018;9:764. doi: 10.3389/fimmu.2018.00764
- 78. Yednock T, Fong DS, Lad EM. C1g and the classical complement cascade in geographic atrophy secondary to age-related macular degeneration. Int J Retin Vitr. 2022;8(1):1-14. doi: 10.1186/s40942-022-00431-v
- 79. Garred P, Genster N, Pilely K, et al. A journey through the lectin pathway of complement—MBL and beyond. Immunol Rev. 2016;274(1):74-97. doi: 10.1111/imr.12468
- 80. Hugli TE, Müller-Eberhard HJ. Anaphylatoxins: C3a and C5a. Adv Immunol. 1978;26:1-53.
- 81. Ehlenberger AG, Nussenzweig V. The role of membrane receptors for C3b and C3d in phagocytosis. J Exp Med. 1977;145(2):357-371. doi: 10.1084/jem.145.2.357
- 82. Morgan BP. The membrane attack complex as an inflammatory trigger. Immunobiol. 2016;221(6):747-751. doi: 10.1016/j.imbio.2015.04.006
- 83. Müller-Eberhard HJ, Schreiber RD. Molecular biology and chemistry of the alternative pathway of complement. Adv Immunol. 1980;29:1-53.
- 84. Zipfel PF, Mihlan M, Skerka C. The alternative pathway of complement: a pattern recognition system. In: Lambris J, editor. Current topics in innate immunity. New York (NY): Springer; 2007. p. 80-92.
- 85. Harboe M, Ulvund G, Vien L, et al. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clin Exp Immunol. 2004;138(3):439-446. doi: 10.1111/j.1365-2249.2004.02627.x
- 86. Ferreira VP, Pangburn MK, Cortés C. Complement control protein factor H: the good, the bad, and the inadequate. Mol Immunol. 2010;47(13):2187-2197. doi: 10.1016/j.molimm.2010.05.007
- 87. Dhillon S. Eculizumab: a review in generalized myasthenia gravis. Drugs. 2018;78(3):367. doi: 10.1007/s40265-018-0875-9
- 88. FDA approves Soliris® (eculizumab) for the treatment of patients with generalized Myasthenia Gravis (gMG) | Alexion Pharmaceuticals, Inc. [Internet]. [cited 2024 Dec 7]. Available from: https://media.alexion.com/news-releases/news-release-details/fdaapproves-solirisr-eculizumab-treatment-patients-generalized
- 89. Howard JF, Barohn RJ, Cutter GR, et al. A randomized, double-blind, placebo-controlled phase II study of eculizumab in patients with

- refractory generalized myasthenia gravis. Muscle Nerve. 2013;48 (1):76-84. doi: 10.1002/mus.23839
- 90. Howard JF, Utsugisawa K, Benatar M, et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 2017:16(12):976-986. doi: 10.1016/S1474-4422(17)30369-1

#### .. Key Phase 3 study results.

- 91. Muppidi S, Utsugisawa K, Benatar M, et al. Long-term safety and efficacy of eculizumab in generalized myasthenia gravis. Muscle Nerve. 2019;60(1):14-24. doi: 10.1002/mus.26447
- 92. Vissing J, Jacob S, Fujita KP, et al. 'Minimal symptom expression' in patients with acetylcholine receptor antibody-positive refractory generalized myasthenia gravis treated with eculizumab. J Neurol. 2020;267(7):1991-2001. doi: 10.1007/s00415-020-09770-y
- 93. Alexion receives FDA approval of  $SOLIRIS^{\textcircled{\scriptsize 0}}$  (eculizumab) for the treatment of adults with neuromyelitis optica spectrum disorder (NMOSD) who are anti-aquaporin-4 (AQP4) antibody positive Alexion Pharmaceuticals, Inc. [Internet]. [cited 2024 Dec 7]. Available from: https://media.alexion.com/news-releases/news-release-details /alexion-receives-fda-approval-solirisr-eculizumab-treatment
- 94. Hamid SHM, Whittam D, Mutch K, et al. What proportion of AQP4-lgG-negative NMO spectrum disorder patients are MOG-lgG positive? A cross sectional study of 132 patients. J Neurol. 2017;264 (10):2088-2094. doi: 10.1007/s00415-017-8596-7
- 95. Papadopoulos MC, Bennett JL, Verkman AS. Treatment of neuromyelitis optica: state-of-the-art and emerging therapies. Nat Rev Neurol. 2014;10(9):493-506. doi: 10.1038/nrneurol.2014.141
- 96. Hinson SR, Pittock SJ, Lucchinetti CF, et al. Pathogenic potential of IgG binding to water channel extracellular domain in neuromyelitis optica. Neurol. 2007;69(24):2221-2231. doi: 10.1212/01.WNL. 0000289761.64862.ce
- 97. Pittock SJ, Berthele A, Fujihara K, et al. Eculizumab in aquaporin-4-Positive neuromyelitis optica spectrum disorder. N Engl J Med. 2019;381(7):614-625. doi: 10.1056/NEJMoa1900866

#### .. Key Phase 3 study results.

- 98. Frampton JE. Eculizumab: a review in neuromyelitis optica spectrum disorder. Drugs. 2020;80(7):719-727. doi: 10.1007/s40265-020-
- 99. Nakashima I, Nakahara J, Yokote H, et al. Long-term safety and effectiveness of eculizumab in patients with aquaporin-4 antibody-positive neuromyelitis optica spectrum disorder: a 2-year interim analysis of post-marketing surveillance in Japan. Ther Adv Neurol Disord. 2023;16:17562864231181177. doi: 10. 1177/17562864231181177
- 100. Vu T, Meisel A, Mantegazza R, et al. Terminal complement inhibitor ravulizumab in generalized myasthenia gravis. NEJM Evid. 2022;1 (5):EVIDoa2100066. doi: 10.1056/EVIDoa2100066
- 101. Vu T, Mantegazza R, Annane D, et al. Long-term efficacy and safety of ravulizumab, a long-acting terminal complement inhibitor, in adults with anti-acetylcholine receptor antibody-positive generalized myasthenia gravis: final results from the phase 3 CHAMPION MG open-label extension (S15.010). Neurology. 2024;102(17\_supplement\_1):2591. doi: 10.1212/WNL.0000000000204620
- 102. Pittock SJ, Barnett M, Bennett JL, et al. Ravulizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. Ann Neurol. 2023;93(6):1053-1068. doi: 10.1002/ana.26626
- 103. Howard JF, Bresch S, Genge A, et al. Safety and efficacy of zilucoplan in patients with generalised myasthenia gravis (RAISE): a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Neurol. 2023;22(5):395-406. doi: 10.1016/S1474-4422(23)00080-7
- 104. Howard JF, Bresch S, Farmakidis C, et al. Long-term safety and efficacy of zilucoplan in patients with generalized myasthenia gravis: interim analysis of the RAISE-XT open-label extension study. Ther Adv Neurol Disord. 2024;17:17562864241243186. doi: 10.1177/17562864241243186
- 105. Qian S, Zhang D, Yang Z, et al. The role of immunoglobulin transport receptor, neonatal Fc receptor in mucosal infection and immunity and therapeutic intervention. Int Immunopharmacol. 2024;138:112583. doi: 10.1016/j.intimp.2024.112583



- 106. Hitt EM. Rozanolixizumab: a new therapy in the treatment of myasthenia gravis. Ann Pharmacother. 2024;58(11):1140-1148. doi: 10.1177/10600280241239048
- 107. Bril V, Drużdż A, Grosskreutz J, et al. Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol. 2023;22(5):383-394. doi: 10.1016/S1474-4422(23)00077-7

#### • Key Phase 3 study results.

- 108. Bril V, Drużdż A, Grosskreutz J, et al. The safety and efficacy of chronic weekly rozanolixizumab treatment in patients with generalized myasthenia gravis (MG0004) (P4-14.017), Neurol, 2024;102(17 supplement\_1):5167. doi: 10.1212/WNL.0000000000205615
- 109. Howard JF, Bril V, Vu T, et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20(7):526-536. doi: 10.1016/S1474-4422(21)00159-9
- 110. Stascheit F, de Sousa CDF, Aigner A, et al. Ravulizumab and efgartigimod in myasthenia gravis: a real-world study. Neurol Neuroimmunol Neuroinflamm. 2025;12(1):e200331. doi: 10.1212/ NXI 0000000000200331
- 111. Howard JF, Vu T, Li G, et al. Subcutaneous efgartigimod PH20 in generalized myasthenia gravis: a phase 3 randomized noninferiority study (ADAPT-SC) and interim analyses of a long-term open-label extension study (ADAPT-SC+). Neurotherapeutics. 2024;21(5):e00378. doi: 10.1016/j.neurot.2024.e00378
- 112. Häusser-Kinzel S. Weber MS. The role of B cells and antibodies in multiple sclerosis, neuromyelitis optica, and related disorders. Front Immunol. 2019;10:201. doi: 10.3389/fimmu.2019.00201
- 113. Margoni M, Preziosa P, Filippi M, et al. Anti-CD20 therapies for multiple sclerosis: current status and future perspectives. J Neurol. 2022;269(3):1316-1334. doi: 10.1007/s00415-021-10744-x
- 114. Damato V, Evoli A, Iorio R. Efficacy and safety of rituximab therapy in neuromyelitis optica spectrum disorders: a systematic review and meta-analysis. JAMA Neurol. 2016;73(11):1342-1348. doi: 10. 1001/jamaneurol.2016.1637
- 115. Tahara M, Oeda T, Okada K, et al. Safety and efficacy of rituximab in neuromyelitis optica spectrum disorders (RIN-1 study): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2020;19(4):298-306. doi: 10.1016/S1474-4422(20)30066-1
- 116. Barreras P, Vasileiou ES, Filippatou AG, et al. Long-term effectiveness and safety of rituximab in neuromyelitis optica spectrum disorder and MOG antibody disease. Neurol. 2022;99(22):e2504e2516. doi: 10.1212/WNL.0000000000201260
- 117. Durozard P, Rico A, Boutiere C, et al. Comparison of the response to rituximab between myelin oligodendrocyte glycoprotein and aquaporin-4 antibody diseases. Ann Neurol. 2020;87(2):256-266. doi: 10.1002/ana.25648
- 118. Whittam DH, Cobo-Calvo A, Lopez-Chiriboga AS, et al. Treatment of MOG-lgG-associated disorder with rituximab: an international study of 121 patients. Mult Scler Relat Disord. 2020;44:102251. doi: 10.1016/j.msard.2020.102251
- 119. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676-688. doi: 10.1056/NEJMoa0706383
- 120. Hawker K, O'Connor P, Freedman MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460-471. doi: 10.1002/ana.21867
- 121. Roos I, Hughes S, McDonnell G, et al. Rituximab vs ocrelizumab in relapsing-remitting multiple sclerosis. JAMA Neurol. 2023;80 (8):789-797. doi: 10.1001/jamaneurol.2023.1625
- 122. Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017;376 (3):221-234. doi: 10.1056/NEJMoa1601277
- 123. Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209-220. doi: 10.1056/NEJMoa1606468

- 124. Montalban X, Matthews PM, Simpson A, et al. Real-world evaluation of ocrelizumab in multiple sclerosis: a systematic review. Ann Clin Transl Neurol. 2023;10(3):302-311. doi: 10.1002/acn3.51732
- 125. Bar-Or A, Wiendl H, Montalban X, et al. Rapid and sustained B-cell depletion with subcutaneous ofatumumab in relapsing multiple sclerosis: APLIOS, a randomized phase-2 study. Mult Scler. 2022;28(6):910-924. doi: 10.1177/13524585211044479
- 126. Kira J-I, Nakahara J, Sazonov DV, et al. Effect of ofatumumab versus placebo in relapsing multiple sclerosis patients from Japan and Russia: phase 2 APOLITOS study. Mult Scler. 2022;28 (8):1229-1238. doi: 10.1177/13524585211055934
- 127. Bar-Or A. Grove RA. Austin DJ. et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurol. 2018;90(20):e1805-e1814. doi: 10.1212/ WNL.000000000005516
- 128. Hauser SL, Bar-Or A, Cohen JA, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N Engl J Med. 2020;383(6):546-557. doi: 10.1056/NEJMoa1917246
- 129. Kang C, Blair HA. Ofatumumab: a review in relapsing forms of multiple sclerosis. Drugs. 2021;82(1):55. doi: 10.1007/s40265-021-01650-7
- 130. Hauser SL, Cross AH, Winthrop K, et al. Safety experience with continued exposure to ofatumumab in patients with relapsing forms of multiple sclerosis for up to 3.5 years. Mult Scler. 2022;28 (10):1576-1590. doi: 10.1177/13524585221079731
- 131. Steinman L, Fox E, Hartung H-P, et al. Ublituximab versus teriflunomide in relapsing multiple sclerosis. N Engl J Med. 2022;387 (8):704-714. doi: 10.1056/NEJMoa2201904
- 132. Ali F, Sharma K, Anjum V, et al. Inebilizumab-cdon: USFDA approved for the treatment of NMOSD (neuromyelitis optica spectrum disorder). Curr Drug Discov Technol. 2022;19(1): e140122193419. doi: 10.2174/1570163818666210519103001
- 133. Cree BAC, Bennett JL, Kim HJ, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394(10206):1352-1363. doi: 10.1016/S0140-6736(19)31817-3
- 134. Rensel M, Zabeti A, Mealy MA, et al. Long-term efficacy and safety of inebilizumab in neuromyelitis optica spectrum disorder: analysis of aquaporin-4-immunoglobulin G-seropositive participants taking inebilizumab for ≤4 years in the N-MOmentum trial. Mult Scler. 2022;28(6):925-932. doi: 10.1177/13524585211047223
- 135. Krajnc N, Bsteh G, Berger T, et al. Monoclonal antibodies in the treatment of relapsing multiple sclerosis: an overview with emphasis on pregnancy, vaccination, and risk management. Neurother. 2022;19(3):753-773. doi: 10.1007/s13311-022-01224-9
- 136. Miller DH, Khan OA, Sheremata WA, et al. A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2003;348(1):15-23. doi: 10.1056/NEJMoa020696
- 137. Polman CH, O'Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):899-910. doi: 10.1056/ NEJMoa044397
- 138. Rudick RA, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006;354(9):911-923. doi: 10.1056/NEJMoa044396
- 139. Balcer LJ, Galetta SL, Calabresi PA, et al. Natalizumab reduces visual loss in patients with relapsing multiple sclerosis. Neurol. 2007;68 (16):1299-1304. doi: 10.1212/01.wnl.0000259521.14704.a8
- 140. Balcer LJ, Galetta SL, Polman CH, et al. Low-contrast acuity measures visual improvement in phase 3 trial of natalizumab in relapsing MS. J Neurol Sci. 2012;318(1-2):119-124. doi: 10.1016/j.jns.2012.03.009
- 141. Carson KR, Focosi D, Major EO, et al. Monoclonal antibody-associated progressive multifocal leucoencephalopathy in patients treated with rituximab, natalizumab, and efalizumab: a review from the research on adverse drug events and reports (RADAR) project. Lancet Oncol. 2009;10(8):816-824. doi: 10.1016/S1470-2045(09)70161-5
- 142. Ho P-R, Koendgen H, Campbell N, et al. natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: a retrospective analysis of data from four clinical studies. Lancet Neurol. 2017;16(11):925-933. doi: 10.1016/S1474-4422(17)30282-X



- 143. Miron VE, Jung CG, Kim HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):61-71. doi: 10.1002/ana.21227
- 144. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis |. New England Journal of Medicine; [Internet] [cited 2024 Nov 21]. Available from: https://www.nejm.org/doi/full/10.1056/
- NEJMoa0907839?casa\_token=nE8nhwmCovEAAAAA% 3AQmCO0JZe5AN\_OZTNg5610s5HiJSTCH1-c8msKgWFtEPSE6NE6hsP-HllVXo8j1zZSbbhilxtTYT1Ng8
- 145. Kappos L, Radue E-W, O'Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362(5):387-401. doi: 10.1056/NEJMoa0909494



# Contact us

**Editorial Department** 

**Digital Editor** 

Beatrice Bowlby beatrice.bowlby@tandf.co.uk

**Business Development and Support** 

**Commercial Director** 

Sarah Mayes sarah.mayes@tandf.co.uk

This supplement is brought to you by BioTechniques in association with

